Effective Scaling Approach to Frictionless Quantum Quenches in Trapped Bose Gases


Abstract in English

We work out the effective scaling approach to frictionless quantum quenches in a one-dimensional Bose gas trapped in a harmonic trap. The effective scaling approach produces an auxiliary equation for the scaling parameter interpolating between the noninteracting and the Thomas-Fermi limits. This allows us to implement a frictionless quench by engineering inversely the smooth trap frequency, as compared to the two-jump trajectory. Our result is beneficial to design the shortcut-to-adiabaticity expansion of trapped Bose gases for arbitrary values of interaction, and can be directly extended to the three-dimensional case.

Download