Do you want to publish a course? Click here

Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging

294   0   0.0 ( 0 )
 Added by Elizabeth Neumann
 Publication date 2021
  fields Biology
and research's language is English




Ask ChatGPT about the research

Tissues and organs are composed of distinct cell types that must operate in concert to perform physiological functions. Efforts to create high-dimensional biomarker catalogs of these cells are largely based on transcriptomic single-cell approaches that lack the spatial context required to understand critical cellular communication and correlated structural organization. To probe in situ biology with sufficient coverage depth, several multiplexed protein imaging methods have recently been developed. Though these antibody-based technologies differ in strategy and mode of immunolabeling and detection tags, they commonly utilize antibodies directed against protein biomarkers to provide detailed spatial and functional maps of complex tissues. As these promising antibody-based multiplexing approaches become more widely adopted, new frameworks and considerations are critical for training future users, generating molecular tools, validating antibody panels, and harmonizing datasets. In this perspective, we provide essential resources and key considerations for obtaining robust and reproducible multiplexed antibody-based imaging data compiling specialized knowledge from domain experts and technology developers.



rate research

Read More

DNA methylation is a well-studied genetic modification that regulates gene transcription of Eukaryotes. Its alternations have been recognized as a significant component of cancer development. In this study, we use the DNA methylation 450k data from The Cancer Genome Atlas to evaluate the efficacy of DNA methylation data on cancer classification for 30 cancer types. We propose a new method for gene selection in high dimensional data(over 450 thousand). Variance filtering is first introduced for dimension reduction and Recursive feature elimination (RFE) is then used for feature selection. We address the problem of selecting a small subsets of genes from large number of methylated sites, and our parsimonious model is demonstrated to be efficient, achieving an accuracy over 91%, outperforming other studies which use DNA micro-arrays and RNA-seq Data . The performance of 20 models, which are based on 4 estimators (Random Forest, Decision Tree, Extra Tree and Support Vector Machine) and 5 classifiers (k-Nearest Neighbours, Support Vector Machine, XGboost, Light GBM and Multi-Layer Perceptron), is compared and robustness of the RFE algorithm is examined. Results suggest that the combined model of extra tree plus catboost classifier offers the best performance in cancer identification, with an overall validation accuracy of 91% , 92.3%, 93.3% and 93.5% for 20, 30, 40 and 50 features respectively. The biological functions in cancer development of 50 selected genes is also explored through enrichment analysis and the results show that 12 out of 16 of our top features have already been identified to be specific with cancer and we also propose some more genes to be tested for future studies. Therefore, our method may be utilzed as an auxiliary diagnostic method to determine the actual clinicopathological status of a specific cancer.
In this paper, we derive an effective macroscale description suitable to describe the growth of biological tissue within a porous tissue-engineering scaffold. As in our recent work (Holden textit{et al.} A multiphase multiscale model for nutrient limited tissue growth, The ANZIAM Journal, 2018, doi:10.1017/S1446181118000044) the underlying tissue dynamics is described as a multiphase mixture, thereby naturally accommodating features such as interstitial growth and active cell motion. Via a linearisation of the underlying multiphase model (whose nonlinearity poses significant challenge for such analyses), we obtain, by means of multiple-scales homogenisation, a simplified macroscale model that nevertheless retains explicit dependence on both the microscale scaffold structure and the tissue dynamics. The model we obtain comprises Darcy flow, and differential equations for the volume fraction of cells within the scaffold and the concentration of nutrient, required for growth. These are coupled to underlying Stokes-type cell problems that provide permeability tensors to parameterise the macroscale description. In Holden textit{et al.}, the cell problems retain macroscale dependence, posing significant computational challenges; here, we obtain a decoupled system whereby the quasi-steady cell-problems may be solved separately from the macroscale description, thereby greatly reducing the complexity associated with fully-coupled multiscale descriptions. Moreover, we indicate how the formulation is influenced by a set of alternative microscale boundary conditions.S
A contemporary procedure to grow artificial tissue is to seed cells onto a porous biomaterial scaffold and culture it within a perfusion bioreactor to facilitate the transport of nutrients to growing cells. Typical models of cell growth for tissue engineering applications make use of spatially homogeneous or spatially continuous equations to model cell growth, flow of culture medium, nutrient transport, and their interactions. The network structure of the physical porous scaffold is often incorporated through parameters in these models, either phenomenologically or through techniques like mathematical homogenization. We derive a model on a square grid lattice to demonstrate the importance of explicitly modelling the network structure of the porous scaffold, and compare results from this model with those from a modified continuum model from the literature. We capture two-way coupling between cell growth and fluid flow by allowing cells to block pores, and by allowing the shear stress of the fluid to affect cell growth and death. We explore a range of parameters for both models, and demonstrate quantitative and qualitative differences between predictions from each of these approaches, including spatial pattern formation and local oscillations in cell density present only in the lattice model. These differences suggest that for some parameter regimes, corresponding to specific cell types and scaffold geometries, the lattice model gives qualitatively different model predictions than typical continuum models. Our results inform model selection for bioactive porous tissue scaffolds, aiding in the development of successful tissue engineering experiments and eventually clinically successful technologies.
The imminent release of atlases combining highly multiplexed tissue imaging with single cell sequencing and other omics data from human tissues and tumors creates an urgent need for data and metadata standards compliant with emerging and traditional approaches to histology. We describe the development of a Minimum Information about highly multiplexed Tissue Imaging (MITI) standard that draws on best practices from genomics and microscopy of cultured cells and model organisms.
While electromyography (EMG) and magnetomyography (MMG) are both methods to measure the electrical activity of skeletal muscles, no systematic comparison between both signals exists. Within this work, we propose a systemic in silico model for EMG and MMG and test the hypothesis that MMG surpasses EMG in terms of spatial selectivity. The results show that MMG provides a slightly better spatial selectivity than EMG when recorded directly on the muscle surface. However, there is a remarkable difference in spatial selectivity for non-invasive surface measurements. The spatial selectivity of the MMG components aligned with the muscle fibres and normal to the body surface outperforms the spatial selectivity of surface EMG. Particularly, for the MMGs normal-to-the-surface component the influence of subcutaneous fat is minimal. Further, for the first time, we analyse the contribution of different structural components, i.e., muscle fibres from different motor units and the extracellular space, to the measurable biomagnetic field. Notably, the simulations show that the normal-to-the-surface MMG component, the contribution from volume currents in the extracellular space and in surrounding inactive tissues is negligible. Further, our model predicts a surprisingly high contribution of the passive muscle fibres to the observable magnetic field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا