Do you want to publish a course? Click here

Lightness Modulated Deep Inverse Tone Mapping

376   0   0.0 ( 0 )
 Added by Kanglin Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Single-image HDR reconstruction or inverse tone mapping (iTM) is a challenging task. In particular, recovering information in over-exposed regions is extremely difficult because details in such regions are almost completely lost. In this paper, we present a deep learning based iTM method that takes advantage of the feature extraction and mapping power of deep convolutional neural networks (CNNs) and uses a lightness prior to modulate the CNN to better exploit observations in the surrounding areas of the over-exposed regions to enhance the quality of HDR image reconstruction. Specifically, we introduce a Hierarchical Synthesis Network (HiSN) for inferring a HDR image from a LDR input and a Lightness Adpative Modulation Network (LAMN) to incorporate the the lightness prior knowledge in the inferring process. The HiSN hierarchically synthesizes the high-brightness component and the low-brightness component of the HDR image whilst the LAMN uses a lightness adaptive mask that separates detail-less saturated bright pixels from well-exposed lower light pixels to enable HiSN to better infer the missing information, particularly in the difficult over-exposed detail-less areas. We present experimental results to demonstrate the effectiveness of the new technique based on quantitative measures and visual comparisons. In addition, we present ablation studies of HiSN and visualization of the activation maps inside LAMN to help gain a deeper understanding of the internal working of the new iTM algorithm and explain why it can achieve much improved performance over state-of-the-art algorithms.



rate research

Read More

146 - Jie Yang , Ziyi Liu , Mengchen Lin 2021
Wide dynamic range (WDR) images contain more scene details and contrast when compared to common images. However, it requires tone mapping to process the pixel values in order to display properly. The details of WDR images can diminish during the tone mapping process. In this work, we address the problem by combining a novel reformulated Laplacian pyramid and deep learning. The reformulated Laplacian pyramid always decompose a WDR image into two frequency bands where the low-frequency band is global feature-oriented, and the high-frequency band is local feature-oriented. The reformulation preserves the local features in its original resolution and condenses the global features into a low-resolution image. The generated frequency bands are reconstructed and fine-tuned to output the final tone mapped image that can display on the screen with minimum detail and contrast loss. The experimental results demonstrate that the proposed method outperforms state-of-the-art WDR image tone mapping methods. The code is made publicly available at https://github.com/linmc86/Deep-Reformulated-Laplacian-Tone-Mapping.
219 - Ziyi Liu 2021
The dynamic range of our normal life can exceeds 120 dB, however, the smart-phone cameras and the conventional digital cameras can only capture a dynamic range of 90 dB, which sometimes leads to loss of details for the recorded image. Now, some professional hardware applications and image fusion algorithms have been devised to take wide dynamic range (WDR), but unfortunately existing devices cannot display WDR image. Tone mapping (TM) thus becomes an essential step for exhibiting WDR image on our ordinary screens, which convert the WDR image into low dynamic range (LDR) image. More and more researchers are focusing on this topic, and give their efforts to design an excellent tone mapping operator (TMO), showing detailed images as the same as the perception that human eyes could receive. Therefore, it is important for us to know the history, development, and trend of TM before proposing a practicable TMO. In this paper, we present a comprehensive study of the most well-known TMOs, which divides TMOs into traditional and machine learning-based category.
135 - Jie Yang , Mengchen Lin , Ziyi Liu 2021
Wide dynamic range (WDR) image tone mapping is in high demand in many applications like film production, security monitoring, and photography. It is especially crucial for mobile devices because most of the images taken today are from mobile phones, hence such technology is highly demanded in the consumer market of mobile devices and is essential for a good customer experience. However, high-quality and high-performance WDR image tone mapping implementations are rarely found in the mobile-end. In this paper, we introduce a high performance, mobile-end WDR image tone mapping implementation. It leverages the tone mapping results of multiple receptive fields and calculates a suitable value for each pixel. The utilization of integral image and integral histogram significantly reduce the required computation. Moreover, GPU parallel computation is used to increase the processing speed. The experimental results indicate that our implementation can process a high-resolution WDR image within a second on mobile devices and produce appealing image quality.
Variable rate is a requirement for flexible and adaptable image and video compression. However, deep image compression methods are optimized for a single fixed rate-distortion tradeoff. While this can be addressed by training multiple models for different tradeoffs, the memory requirements increase proportionally to the number of models. Scaling the bottleneck representation of a shared autoencoder can provide variable rate compression with a single shared autoencoder. However, the R-D performance using this simple mechanism degrades in low bitrates, and also shrinks the effective range of bit rates. Addressing these limitations, we formulate the problem of variable rate-distortion optimization for deep image compression, and propose modulated autoencoders (MAEs), where the representations of a shared autoencoder are adapted to the specific rate-distortion tradeoff via a modulation network. Jointly training this modulated autoencoder and modulation network provides an effective way to navigate the R-D operational curve. Our experiments show that the proposed method can achieve almost the same R-D performance of independent models with significantly fewer parameters.
Recent efforts on solving inverse problems in imaging via deep neural networks use architectures inspired by a fixed number of iterations of an optimization method. The number of iterations is typically quite small due to difficulties in training networks corresponding to more iterations; the resulting solvers cannot be run for more iterations at test time without incurring significant errors. This paper describes an alternative approach corresponding to an infinite number of iterations, yielding a consistent improvement in reconstruction accuracy above state-of-the-art alternatives and where the computational budget can be selected at test time to optimize context-dependent trade-offs between accuracy and computation. The proposed approach leverages ideas from Deep Equilibrium Models, where the fixed-point iteration is constructed to incorporate a known forward model and insights from classical optimization-based reconstruction methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا