Do you want to publish a course? Click here

Conditional Directed Graph Convolution for 3D Human Pose Estimation

113   0   0.0 ( 0 )
 Added by Wenbo Hu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Graph convolutional networks have significantly improved 3D human pose estimation by representing the human skeleton as an undirected graph. However, this representation fails to reflect the articulated characteristic of human skeletons as the hierarchical orders among the joints are not explicitly presented. In this paper, we propose to represent the human skeleton as a directed graph with the joints as nodes and bones as edges that are directed from parent joints to child joints. By so doing, the directions of edges can explicitly reflect the hierarchical relationships among the nodes. Based on this representation, we further propose a spatial-temporal conditional directed graph convolution to leverage varying non-local dependence for different poses by conditioning the graph topology on input poses. Altogether, we form a U-shaped network, named U-shaped Conditional Directed Graph Convolutional Network, for 3D human pose estimation from monocular videos. To evaluate the effectiveness of our method, we conducted extensive experiments on two challenging large-scale benchmarks: Human3.6M and MPI-INF-3DHP. Both quantitative and qualitative results show that our method achieves top performance. Also, ablation studies show that directed graphs can better exploit the hierarchy of articulated human skeletons than undirected graphs, and the conditional connections can yield adaptive graph topologies for different poses.



rate research

Read More

This study considers the 3D human pose estimation problem in a single RGB image by proposing a conditional random field (CRF) model over 2D poses, in which the 3D pose is obtained as a byproduct of the inference process. The unary term of the proposed CRF model is defined based on a powerful heat-map regression network, which has been proposed for 2D human pose estimation. This study also presents a regression network for lifting the 2D pose to 3D pose and proposes the prior term based on the consistency between the estimated 3D pose and the 2D pose. To obtain the approximate solution of the proposed CRF model, the N-best strategy is adopted. The proposed inference algorithm can be viewed as sequential processes of bottom-up generation of 2D and 3D pose proposals from the input 2D image based on deep networks and top-down verification of such proposals by checking their consistencies. To evaluate the proposed method, we use two large-scale datasets: Human3.6M and HumanEva. Experimental results show that the proposed method achieves the state-of-the-art 3D human pose estimation performance.
Most existing human pose estimation (HPE) methods exploit multi-scale information by fusing feature maps of four different spatial sizes, ie $1/4$, $1/8$, $1/16$, and $1/32$ of the input image. There are two drawbacks of this strategy: 1) feature maps of different spatial sizes may be not well aligned spatially, which potentially hurts the accuracy of keypoint location; 2) these scales are fixed and inflexible, which may restrict the generalization ability over various human sizes. Towards these issues, we propose an adaptive dilated convolution (ADC). It can generate and fuse multi-scale features of the same spatial sizes by setting different dilation rates for different channels. More importantly, these dilation rates are generated by a regression module. It enables ADC to adaptively adjust the fused scales and thus ADC may generalize better to various human sizes. ADC can be end-to-end trained and easily plugged into existing methods. Extensive experiments show that ADC can bring consistent improvements to various HPE methods. The source codes will be released for further research.
We present an approach to recover absolute 3D human poses from multi-view images by incorporating multi-view geometric priors in our model. It consists of two separate steps: (1) estimating the 2D poses in multi-view images and (2) recovering the 3D poses from the multi-view 2D poses. First, we introduce a cross-view fusion scheme into CNN to jointly estimate 2D poses for multiple views. Consequently, the 2D pose estimation for each view already benefits from other views. Second, we present a recursive Pictorial Structure Model to recover the 3D pose from the multi-view 2D poses. It gradually improves the accuracy of 3D pose with affordable computational cost. We test our method on two public datasets H36M and Total Capture. The Mean Per Joint Position Errors on the two datasets are 26mm and 29mm, which outperforms the state-of-the-arts remarkably (26mm vs 52mm, 29mm vs 35mm). Our code is released at url{https://github.com/microsoft/multiview-human-pose-estimation-pytorch}.
In this paper, we propose a novel 3D human pose estimation algorithm from a single image based on neural networks. We adopted the structure of the relational networks in order to capture the relations among different body parts. In our method, each pair of different body parts generates features, and the average of the features from all the pairs are used for 3D pose estimation. In addition, we propose a dropout method that can be used in relational modules, which inherently imposes robustness to the occlusions. The proposed network achieves state-of-the-art performance for 3D pose estimation in Human 3.6M dataset, and it effectively produces plausible results even in the existence of missing joints.
Modern 3D human pose estimation techniques rely on deep networks, which require large amounts of training data. While weakly-supervised methods require less supervision, by utilizing 2D poses or multi-view imagery without annotations, they still need a sufficiently large set of samples with 3D annotations for learning to succeed. In this paper, we propose to overcome this problem by learning a geometry-aware body representation from multi-view images without annotations. To this end, we use an encoder-decoder that predicts an image from one viewpoint given an image from another viewpoint. Because this representation encodes 3D geometry, using it in a semi-supervised setting makes it easier to learn a mapping from it to 3D human pose. As evidenced by our experiments, our approach significantly outperforms fully-supervised methods given the same amount of labeled data, and improves over other semi-supervised methods while using as little as 1% of the labeled data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا