Effect of Al content on the hardness and thermal stability study of AlTiN and AlTiBN coatings deposited by HiPIMS


Abstract in English

The microstructure, mechanical properties and thermal stability of AlTiN and AlTiBN coatings grown by reactive high-power impulse magnetron sputtering (HiPIMS) have been analyzed as a function of Al/(Al+Ti) ratio, x, between 0.5 and 0.8. The coatings were predominantly formed by a face-centered cubic Ti(Al)N crystalline phase, both with and without B, even for x ratios as high as 0.6, which is higher than the ratio typically encountered for AlTiN coatings deposited by reactive magnetron sputtering. B doping, in combination with the highly energetic deposition conditions offered by HiPIMS, results in the suppression of the columnar grain morphology typically encountered in AlTiN coatings. On the contrary, the AlTiBN coatings grown by HiPIMS present a dense nanocomposite type microstructure, formed by nanocrystalline Ti(Al)N domains and amorphous regions composed of Ti(Al)B2 and BN. As a result, high-Al content (x>0.6) AlTiBN coatings grown by HiPIMS offer higher hardness, elasticity and fracture toughness than AlTiN coatings. Moreover, the thermal stability and the hot hardness are substantially enhanced, delaying the onset of formation of the detrimental hexagonal AlN phase from 850 C in the case of AlTiN, to 1000 C in the case of AlTiBN.

Download