We find half-wormhole solutions in Jackiw-Teitelboim gravity by allowing the geometry to end on a spacetime D-brane with specific boundary conditions. This theory also contains a Euclidean wormhole which leads to a factorization problem. We propose that half-wormholes provide a gravitational picture for how factorization is restored and show that the Euclidean wormhole emerges from averaging over the boundary conditions. The wormhole is known to be dual to a Sachdev-Ye-Kitaev (SYK) model with random complex couplings. We find that the free energy of the half-wormhole is strikingly similar to that of a single realization of this SYK model. These results suggest that the gravitational path integral computes an average over spacetime D-brane boundary conditions.
We argue that stringy effects in a putative gravity-dual picture for SYK-like models are related to the branching time, a kinetic coefficient defined in terms of the retarded kernel. A bound on the branching time is established assuming that the leading diagrams are ladders with thin rungs. Thus, such models are unlikely candidates for sub-AdS holography. In the weak coupling limit, we derive a relation between the branching time, the Lyapunov exponent, and the quasiparticle lifetime using two different approximations.
We aim at formulating a higher-spin gravity theory around AdS$_2$ relevant for holography. As a first step, we investigate its kinematics by identifying the low-dimensional cousins of the standard higher-dimensional structures in higher-spin gravity such as the singleton, the higher-spin symmetry algebra, the higher-rank gauge and matter fields, etc. In particular, the higher-spin algebra is given here by $hs[lambda]$ and parameterized by a real parameter $lambda$. The singleton is defined to be a Verma module of the AdS$_2$ isometry subalgebra $so(2,1) subset hs[lambda]$ with conformal weight $Delta = frac{1pmlambda}{2},$. On the one hand, the spectrum of local modes is determined by the Flato-Fronsdal theorem for the tensor product of two such singletons. It is given by an infinite tower of massive scalar fields in AdS$_2$ with ascending masses expressed in terms of $lambda$. On the other hand, the higher-spin fields arising through the gauging of $hs[lambda]$ algebra do not propagate local degrees of freedom. Our analysis of the spectrum suggests that AdS$_2$ higher-spin gravity is a theory of an infinite collection of massive scalars with fine-tuned masses, interacting with infinitely many topological gauge fields. Finally, we discuss the holographic CFT$_1$ duals of the kinematical structures identified in the bulk.
In this work we explore the effect of rotation in the size of a traversable wormhole obtained via a double trace boundary deformation. We find that at fixed temperature the size of the wormhole increases with the angular momentum $J/Mell$. The amount of information that can be sent through the wormhole increases as well. However, for the type of interaction considered, the wormhole closes as the temperature approaches the extremal limit. We also briefly consider the scenario where the boundary coupling is not spatially homogeneous and show how this is reflected in the wormhole opening.
We present effective field theories for the weakly coupled Weyl-$mathrm{Z}_2$ semimetal, as well as the holographic realization for the strongly coupled case. In both cases, the anomalous systems have both the chiral anomaly and the $mathrm{Z}_2$ anomaly and possess topological quantum phase transitions from the Weyl-$mathrm{Z}_2$ semimetal phases to partly or fully topological trivial phases. We find that the topological phase transition is characterized by the anomalous transport parameters, i.e. the anomalous Hall conductivity and the $mathrm{Z}_2$ anomalous Hall conductivity. These two parameters are nonzero at the Weyl-$mathrm{Z}_2$ semimetal phase and vanish at the topologically trivial phases. In the holographic case, the different behavior between the two anomalous transport coefficients is discussed. Our work reveals the novel phase structure of strongly interacting Weyl-$mathrm{Z}_2$ semimetal with two pairs of nodes.
We consider the linear stability of $4$-dimensional hairy black holes with mixed boundary conditions in Anti-de Sitter spacetime. We focus on the mass of scalar fields around the maximally supersymmetric vacuum of the gauged $mathcal{N}=8$ supergravity in four dimensions, $m^{2}=-2l^{-2}$. It is shown that the Schr{o}dinger operator on the half-line, governing the $S^{2}$, $H^{2}$ or $mathbb{R}^{2}$ invariant mode around the hairy black hole, allows for non-trivial self-adjoint extensions and each of them correspons to a class of mixed boundary conditions in the gravitational theory. Discarding the self-adjoint extensions with a negative mode impose a restriction on these boundary conditions. The restriction is given in terms of an integral of the potential in the Schr{o}dinger operator resembling the estimate of Simon for Schr{o}dinger operators on the real line. In the context of AdS/CFT duality, our result has a natural interpretation in terms of the field theory dual effective potential.