We introduce a quantum divide and conquer algorithm that enables the use of distributed computing for constrained combinatorial optimization problems. The algorithm consists of three major components: classical partitioning of a target graph into multiple subgraphs, variational optimization over these subgraphs, and a quantum circuit cutting procedure that allows the optimization to take place independently on separate quantum processors. We simulate the execution of the quantum divide and conquer algorithm to find approximate solutions to instances of the Maximum Independent Set problem which have nearly twice as many nodes than the number of qubits available on a single quantum processor.
Advantages in several fields of research and industry are expected with the rise of quantum computers. However, the computational cost to load classical data in quantum computers can impose restrictions on possible quantum speedups. Known algorithms to create arbitrary quantum states require quantum circuits with depth O(N) to load an N-dimensional vector. Here, we show that it is possible to load an N-dimensional vector with a quantum circuit with polylogarithmic depth and entangled information in ancillary qubits. Results show that we can efficiently load data in quantum devices using a divide-and-conquer strategy to exchange computational time for space. We demonstrate a proof of concept on a real quantum device and present two applications for quantum machine learning. We expect that this new loading strategy allows the quantum speedup of tasks that require to load a significant volume of information to quantum devices.
We consider the learning of algorithmic tasks by mere observation of input-output pairs. Rather than studying this as a black-box discrete regression problem with no assumption whatsoever on the input-output mapping, we concentrate on tasks that are amenable to the principle of divide and conquer, and study what are its implications in terms of learning. This principle creates a powerful inductive bias that we leverage with neural architectures that are defined recursively and dynamically, by learning two scale-invariant atomic operations: how to split a given input into smaller sets, and how to merge two partially solved tasks into a larger partial solution. Our model can be trained in weakly supervised environments, namely by just observing input-output pairs, and in even weaker environments, using a non-differentiable reward signal. Moreover, thanks to the dynamic aspect of our architecture, we can incorporate the computational complexity as a regularization term that can be optimized by backpropagation. We demonstrate the flexibility and efficiency of the Divide-and-Conquer Network on several combinatorial and geometric tasks: convex hull, clustering, knapsack and euclidean TSP. Thanks to the dynamic programming nature of our model, we show significant improvements in terms of generalization error and computational complexity.
In data containing heterogeneous subpopulations, classification performance benefits from incorporating the knowledge of cluster structure in the classifier. Previous methods for such combined clustering and classification are either 1) classifier-specific and not generic, or 2) independently perform clustering and classifier training, which may not form clusters that can potentially benefit classifier performance. The question of how to perform clustering to improve the performance of classifiers trained on the clusters has received scant attention in previous literature, despite its importance in several real-world applications. In this paper, we design a simple and efficient classification algorithm called Clustering Aware Classification (CAC), to find clusters that are well suited for being used as training datasets by classifiers for each underlying subpopulation. Our experiments on synthetic and real benchmark datasets demonstrate the efficacy of CAC over previous methods for combined clustering and classification.
Adiabatic quantum computing and optimization have garnered much attention recently as possible models for achieving a quantum advantage over classical approaches to optimization and other special purpose computations. Both techniques are probabilistic in nature and the minimum gap between the ground state and first excited state of the system during evolution is a major factor in determining the success probability. In this work we investigate a strategy for increasing the minimum gap and success probability by introducing intermediate Hamiltonians that modify the evolution path between initial and final Hamiltonians. We focus on an optimization problem relevant to recent hardware implementations and present numerical evidence for the existence of a purely local intermediate Hamiltonian that achieve the optimum performance in terms of pushing the minimum gap to one of the end points of the evolution. As a part of this study we develop a convex optimization formulation of the search for optimal adiabatic schedules that makes this computation more tractable, and which may be of independent interest. We further study the effectiveness of random intermediate Hamiltonians on the minimum gap and success probability, and empirically find that random Hamiltonians have a significant probability of increasing the success probability, but only by a modest amount.
Designing a good reward function is essential to robot planning and reinforcement learning, but it can also be challenging and frustrating. The reward needs to work across multiple different environments, and that often requires many iterations of tuning. We introduce a novel divide-and-conquer approach that enables the designer to specify a reward separately for each environment. By treating these separate reward functions as observations about the underlying true reward, we derive an approach to infer a common reward across all environments. We conduct user studies in an abstract grid world domain and in a motion planning domain for a 7-DOF manipulator that measure user effort and solution quality. We show that our method is faster, easier to use, and produces a higher quality solution than the typical method of designing a reward jointly across all environments. We additionally conduct a series of experiments that measure the sensitivity of these results to different properties of the reward design task, such as the number of environments, the number of feasible solutions per environment, and the fraction of the total features that vary within each environment. We find that independent reward design outperforms the standard, joint, reward design process but works best when the design problem can be divided into simpler subproblems.
Zain H. Saleem
,Teague Tomesh
,Michael A. Perlin
.
(2021)
.
"Quantum Divide and Conquer for Combinatorial Optimization and Distributed Computing"
.
Zain Saleem Dr
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا