Consistent higher order $sigma(mathcal{G} ,mathcal{G}rightarrow h)$, $Gamma(h rightarrow mathcal{G} ,mathcal{G})$ and $Gamma(h rightarrow gamma gamma)$ in geoSMEFT


Abstract in English

We report consistent results for $Gamma(h rightarrow gamma gamma)$, $sigma(mathcal{G} ,mathcal{G}rightarrow h)$ and $Gamma(h rightarrow mathcal{G} ,mathcal{G})$ in the Standard Model Effective Field Theory (SMEFT) perturbing the SM by corrections $mathcal{O}(bar{v}_T^2/16 pi^2 Lambda^2)$ in the Background Field Method (BFM) approach to gauge fixing, and to $mathcal{O}(bar{v}_T^4/Lambda^4)$ using the geometric formulation of the SMEFT. We combine and modify recent results in the literature into a complete set of consistent results, uniforming conventions, and simultaneously complete the one loop results for these processes in the BFM. We emphasise calculational scheme dependence present across these processes, and how the operator and loop expansions are not independent beyond leading order. We illustrate several cross checks of consistency in the results.

Download