Do you want to publish a course? Click here

Single-image Full-body Human Relighting

145   0   0.0 ( 0 )
 Added by Manuel Lagunas
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a single-image data-driven method to automatically relight images with full-body humans in them. Our framework is based on a realistic scene decomposition leveraging precomputed radiance transfer (PRT) and spherical harmonics (SH) lighting. In contrast to previous work, we lift the assumptions on Lambertian materials and explicitly model diffuse and specular reflectance in our data. Moreover, we introduce an additional light-dependent residual term that accounts for errors in the PRT-based image reconstruction. We propose a new deep learning architecture, tailored to the decomposition performed in PRT, that is trained using a combination of L1, logarithmic, and rendering losses. Our model outperforms the state of the art for full-body human relighting both with synthetic images and photographs.



rate research

Read More

In this paper, we consider the problem to automatically reconstruct garment and body shapes from a single near-front view RGB image. To this end, we propose a layered garment representation on top of SMPL and novelly make the skinning weight of garment independent of the body mesh, which significantly improves the expression ability of our garment model. Compared with existing methods, our method can support more garment categories and recover more accurate geometry. To train our model, we construct two large scale datasets with ground truth body and garment geometries as well as paired color images. Compared with single mesh or non-parametric representation, our method can achieve more flexible control with separate meshes, makes applications like re-pose, garment transfer, and garment texture mapping possible. Code and some data is available at https://github.com/jby1993/BCNet.
Lighting plays a central role in conveying the essence and depth of the subject in a portrait photograph. Professional photographers will carefully control the lighting in their studio to manipulate the appearance of their subject, while consumer photographers are usually constrained to the illumination of their environment. Though prior works have explored techniques for relighting an image, their utility is usually limited due to requirements of specialized hardware, multiple images of the subject under controlled or known illuminations, or accurate models of geometry and reflectance. To this end, we present a system for portrait relighting: a neural network that takes as input a single RGB image of a portrait taken with a standard cellphone camera in an unconstrained environment, and from that image produces a relit image of that subject as though it were illuminated according to any provided environment map. Our method is trained on a small database of 18 individuals captured under different directional light sources in a controlled light stage setup consisting of a densely sampled sphere of lights. Our proposed technique produces quantitatively superior results on our datasets validation set compared to prior works, and produces convincing qualitative relighting results on a dataset of hundreds of real-world cellphone portraits. Because our technique can produce a 640 $times$ 640 image in only 160 milliseconds, it may enable interactive user-facing photographic applications in the future.
Outdoor scene relighting is a challenging problem that requires good understanding of the scene geometry, illumination and albedo. Current techniques are completely supervised, requiring high quality synthetic renderings to train a solution. Such renderings are synthesized using priors learned from limited data. In contrast, we propose a self-supervised approach for relighting. Our approach is trained only on corpora of images collected from the internet without any user-supervision. This virtually endless source of training data allows training a general relighting solution. Our approach first decomposes an image into its albedo, geometry and illumination. A novel relighting is then produced by modifying the illumination parameters. Our solution capture shadow using a dedicated shadow prediction map, and does not rely on accurate geometry estimation. We evaluate our technique subjectively and objectively using a new dataset with ground-truth relighting. Results show the ability of our technique to produce photo-realistic and physically plausible results, that generalizes to unseen scenes.
Recent work has shown great progress in building photorealistic animatable full-body codec avatars, but these avatars still face difficulties in generating high-fidelity animation of clothing. To address the difficulties, we propose a method to build an animatable clothed body avatar with an explicit representation of the clothing on the upper body from multi-view captured videos. We use a two-layer mesh representation to separately register the 3D scans with templates. In order to improve the photometric correspondence across different frames, texture alignment is then performed through inverse rendering of the clothing geometry and texture predicted by a variational autoencoder. We then train a new two-layer codec avatar with separate modeling of the upper clothing and the inner body layer. To learn the interaction between the body dynamics and clothing states, we use a temporal convolution network to predict the clothing latent code based on a sequence of input skeletal poses. We show photorealistic animation output for three different actors, and demonstrate the advantage of our clothed-body avatars over single-layer avatars in the previous work. We also show the benefit of an explicit clothing model which allows the clothing texture to be edited in the animation output.
Human bodies exhibit various shapes for different identities or poses, but the body shape has certain similarities in structure and thus can be embedded in a low-dimensional space. This paper presents an autoencoder-like network architecture to learn disentangled shape and pose embedding specifically for the 3D human body. This is inspired by recent progress of deformation-based latent representation learning. To improve the reconstruction accuracy, we propose a hierarchical reconstruction pipeline for the disentangling process and construct a large dataset of human body models with consistent connectivity for the learning of the neural network. Our learned embedding can not only achieve superior reconstruction accuracy but also provide great flexibility in 3D human body generation via interpolation, bilinear interpolation, and latent space sampling. The results from extensive experiments demonstrate the powerfulness of our learned 3D human body embedding in various applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا