Do you want to publish a course? Click here

Takagi type functions and dynamical systems: the smoothness of the SBR measure and the existence of local time

76   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We investigate Takagi-type functions with roughness parameter $gamma$ that are Holder continuous with coefficient $H=frac{loggamma}{log eh}.$ Analytical access is provided by an embedding into a dynamical system related to the baker transform where the graphs of the functions are identified as their global attractors. They possess stable manifolds hosting Sinai-Bowen-Ruelle (SBR) measures. We show that the SBR measure is absolutely continuous for large enough $gamma$. Dually, where duality is related to time reversal, we prove that for large enough $gamma$ a version of the Takagi-type curve centered around fibers of the associated stable manifold possesses a square integrable local time.



rate research

Read More

We investigate Weierstrass functions with roughness parameter $gamma$ that are Holder continuous with coefficient $H={loggamma}/{log frac12}.$ Analytical access is provided by an embedding into a dynamical system related to the baker transform where the graphs of the functions are identified as their global attractors. They possess stable manifolds hosting Sinai-Bowen-Ruelle (SBR) measures. We systematically exploit a telescoping property of associated measures to give an alternative proof of the absolute continuity of the SBR measure for large enough $gamma$ with square-integrable density. Telescoping allows a macroscopic argument using the transversality of the flow related to the mapping describing the stable manifold. The smoothness of the SBR measure can be used to compute the Hausdorff dimension of the graphs of the original Weierstrass functions and investigate their local times.
Let $(X,mathcal{B},mu)$ be a standard probability space. We give new fundamental results determining solutions to the coboundary equation: begin{eqnarray*} f = g - g circ T end{eqnarray*} where $f in L^p$ and $T$ is ergodic invertible measure preserving on $(X, mathcal{B}, mu )$. We extend previous results by showing for any measurable $f$ that is non-zero on a set of positive measure, the class of measure preserving $T$ with a measurable solution $g$ is meager (including the case where $int_X f dmu = 0$). From this fact, a natural question arises: given $f$, does there always exist a solution pair $T$ and $g$? In regards to this question, our main results are: (i) Given measurable $f$, there exists an ergodic invertible measure preserving transformation $T$ and measurable function $g$ such that $f(x) = g(x) - g(Tx)$ for a.e. $xin X$, if and only if $int_{f > 0} f dmu = - int_{f < 0} f dmu$ (whether finite or $infty$). (ii) Given mean-zero $f in L^p$ for $p geq 1$, there exists an ergodic invertible measure preserving $T$ and $g in L^{p-1}$ such that $f(x) = g(x) - g( Tx )$ for a.e. $x in X$. (iii) In some sense, the previous existence result is the best possible. For $p geq 1$, there exist mean-zero $f in L^p$ such that for any ergodic invertible measure preserving $T$ and any measurable $g$ such that $f(x) = g(x) - g(Tx)$ a.e., then $g otin L^q$ for $q > p - 1$. Also, we show this situation is generic for mean-zero $f in L^p$. Finally, it is shown that we cannot expect finite moments for solutions $g$, when $f in L^1$. In particular, given any $phi : mathbb{R} to mathbb{R}$ such that $lim_{xto infty} phi (x) = infty$, there exist mean-zero $f in L^1$ such that for any solutions $T$ and $g$, the transfer function $g$ satisfies: begin{eqnarray*} int_{X} phi big( | g(x) | big) dmu = infty. end{eqnarray*}
135 - Morris W. Hirsch 2008
Certain dynamical models of competition have a unique invariant hypersurface to whichevery nonzero tractory is asymptotic, having simple geometry and topology.
Let $DeltasubsetneqV$ be a proper subset of the vertices $V$ of the defining graph of an aperiodic shift of finite type $(Sigma_{A}^{+},S)$. Let $Delta_{n}$ be the union of cylinders in $Sigma_{A}^{+}$ corresponding to the points $x$ for which the first $n$-symbols of $x$ belong to $Delta$ and let $mu$ be an equilibrium state of a Holder potential $phi$ on $Sigma_{A}^{+}$. We know that $mu(Delta_{n})$ converges to zero as $n$ diverges. We study the asymptotic behaviour of $mu(Delta_{n})$ and compare it with the pressure of the restriction of $phi$ to $Sigma_{Delta}$. The present paper extends some results in cite{CCC} to the case when $Sigma_{Delta}$ is irreducible and periodic. We show an explicit example where the asymptotic behaviour differs from the aperiodic case.
We establish two precise asymptotic results on the Birkhoff sums for dynamical systems. These results are parallel to that on the arithmetic sums of independent and identically distributed random variables previously obtained by Hsu and Robbins, ErdH{o}s, Heyde. We apply our results to the Gauss map and obtain new precise asymptotics in the theorem of Levy on the regular continued fraction expansion of irrational numbers in $(0,1)$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا