Do you want to publish a course? Click here

Epitaxial stabilization of metastable 3C BaRuO3 thin film with ferromagnetic non-Fermi liquid phase

83   0   0.0 ( 0 )
 Added by Jegon Lee
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thin films of perovskite Ruthenates of the general formula ARuO3 (A = Ca and Sr) are versatile electrical conductors for viable oxide electronics. They are also scientifically intriguing, as they exhibit non-trivial electromagnetic ground states depending on the A-site element. Among them, realization of the cubic perovskite (3C) BaRuO3 thin film has been a challenge so far, because the 3C phase is metastable with the largest formation energy among the various polymorph phases of BaRuO3. In this study, we successfully prepared 3C BaRuO3 thin films employing epitaxial stabilization. The 3C BaRuO3 thin films show itinerant ferromagnetism with a transition temperature of ~48 K and a non-Fermi liquid phase. The epitaxial stabilization of the 3C BaRuO3 further enabled us to make a standard comparison of perovskite Ruthenates thin films, thereby establishing the importance of the Ru-O orbital hybridization in understanding the itinerant magnetic system.



rate research

Read More

We report herein fabrication and characterization of a thin-film transistor (TFT) using single-crystalline, epitaxial SrTiO3 film, which was grown by a pulsed laser deposition technique followed by the thermal annealing treatment in an oxygen atmosphere. Although TFTs on the polycrystalline epitaxial SrTiO3 films (as-deposited) exhibited poor transistor characteristics, the annealed single-crystalline SrTiO3 TFT exhibits transistor characteristics comparable with those of bulk single-crystal SrTiO3 FET: an on/off current ratio >10^5, sub-threshold swing ~2.1 V/decade, and field-effect mobility ~0.8 cm^2/Vs. This demonstrates the effectiveness of the appropriate thermal annealing treatment of epitaxial SrTiO3 films.
We present a comprehensive study of the crystal structure of the thin-film, ferromagnetic topological insulator (Bi, Sb)$_{2-x}$V$_x$Te$_3$. The dissipationless quantum anomalous Hall edge states it manifests are of particular interest for spintronics, as a natural spin filter or pure spin source, and as qubits for topological quantum computing. For ranges typically used in experiments, we investigate the effect of doping, substrate choice and film thickness on the (Bi, Sb)$_2$Te$_3$ unit cell using high-resolution X-ray diffractometry. Scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements provide local structural and interfacial information. We find that the unit cell is unaffected in-plane by vanadium doping changes, and remains unchanged over a thickness range of 4--10 quintuple layers (1 QL $approx$ 1 nm). The in-plane lattice parameter ($a$) also remains the same in films grown on different substrate materials. However, out-of-plane the $c$-axis is reduced in films grown on less closely lattice-matched substrates, and increases with the doping level.
215 - H. Bea , M. Bibes , F. Ott 2007
We have combined neutron scattering and piezoresponse force microscopy to study the relation between the exchange bias observed in CoFeB/BiFeO3 heterostructures and the multiferroic domain structure of the BiFeO3 films. We show that the exchange field scales with the inverse of the ferroelectric and antiferromagnetic domain size, as expected from Malozemoffs model of exchange bias extended to multiferroics. Accordingly, polarized neutron reflectometry reveals the presence of uncompensated spins in the BiFeO3 film at the interface with the CoFeB. In view of these results we discuss possible strategies to switch the magnetization of a ferromagnet by an electric field using BiFeO3.
Two-dimensional (2D) transition metal dichalcogenides MX2 (M = Mo, W, X = S, Se, Te) attracts enormous research interests in recent years. Its 2H phase possesses an indirect to direct bandgap transition in 2D limit, and thus shows great application potentials in optoelectronic devices [1]. The 1T crystalline phase transition can drive the monolayer MX2 to be a 2D topological insulator. Here we realized the molecular beam epitaxial (MBE) growth of both the 1T and 2H phase monolayer WSe2 on bilayer graphene (BLG) substrate. The crystalline structures of these two phases were characterized using scanning tunneling microscopy. The monolayer 1T-WSe2 was found to be metastable, and can transform into 2H phase under post-annealing procedure. The phase transition temperature of 1T-WSe2 grown on BLG is lower than that of 1T phase grown on 2H-WSe2 layers. This thermo-driven crystalline phase transition makes the monolayer WSe2 to be an ideal platform for the controlling of topological phase transitions in 2D materials family.
Pure spin current has transfigured the energy-efficient spintronic devices and it has the salient characteristic of transport of the spin angular momentum. Spin pumping is a potent method to generate pure spin current and for its increased efficiency high effective spin-mixing conductance (Geff) and interfacial spin transparency (T) are essential. Here, a giant T is reported in Sub/W(t)/Co20Fe60B20(d)/SiO2(2 nm) heterostructures in beta-tungsten (beta-W) phase by employing all-optical time-resolved magneto-optical Kerr effect technique. From the variation of Gilbert damping with W and CoFeB thicknesses, the spin diffusion length of W and spin-mixing conductances are extracted. Subsequently, T is derived as 0.81 pm 0.03 for the beta-W/CoFeB interface. A sharp variation of Geff and T with W thickness is observed in consonance with the thickness-dependent structural phase transition and resistivity of W. The spin memory loss and two-magnon scattering effects are found to have negligible contributions to damping modulation as opposed to spin pumping effect which is reconfirmed from the invariance of damping with Cu spacer layer thickness inserted between W and CoFeB. The observation of giant interfacial spin transparency and its strong dependence on crystal structures of W will be important for pure spin current based spin-orbitronic devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا