Do you want to publish a course? Click here

On Global Hyperbolicity of Spacetimes: Topology Meets Functional Analysis

79   0   0.0 ( 0 )
 Added by Albert Much
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

This chapter is an up-to-date account of results on globally hyperbolic spacetimes, and serves several purposes. We begin with the exposition of results from a foundational level, where the main tools are order theory and general topology, we continue with results of a more geometric nature, and we conclude with results that are related to current research in theoretical physics. In each case, we list a number of open questions and formulate, for a class of spacetimes, an interesting connection between global hyperbolicity of a manifold and the geodesic completeness of its corresponding space-like surfaces. This connection is substantial for the proof of essential self-adjointness of a class of pseudo differential operators, that stem from relativistic quantum field theory.



rate research

Read More

We show that maximal causal curves for a Lipschitz continuous Lorentzian metric admit a $mathcal{C}^{1,1}$-parametrization and that they solve the geodesic equation in the sense of Filippov in this parametrization. Our proof shows that maximal causal curves are either everywhere lightlike or everywhere timelike. Furthermore, the proof demonstrates that maximal causal curves for an $alpha$-Holder continuous Lorentzian metric admit a $mathcal{C}^{1,frac{alpha}{4}}$-parametrization.
A systematic study of (smooth, strong) cone structures $C$ and Lorentz-Finsler metrics $L$ is carried out. As a link between both notions, cone triples $(Omega,T, F)$, where $Omega$ (resp. $T$) is a 1-form (resp. vector field) with $Omega(T)equiv 1$ and $F$, a Finsler metric on $ker (Omega)$, are introduced. Explicit descriptions of all the Finsler spacetimes are given, paying special attention to stationary and static ones, as well as to issues related to differentiability. In particular, cone structures $C$ are bijectively associated with classes of anisotropically conformal metrics $L$, and the notion of {em cone geodesic} is introduced consistently with both structures. As a non-relativistic application, the {em time-dependent} Zermelo navigation problem is posed rigorously, and its general solution is provided.
A spinless covariant field $phi$ on Minkowski spacetime $M^{d+1}$ obeys the relation $U(a,Lambda)phi(x)U(a,Lambda)^{-1}=phi(Lambda x+a)$ where $(a,Lambda)$ is an element of the Poincare group $Pg$ and $U:(a,Lambda)to U(a,Lambda)$ is its unitary representation on quantum vector states. It expresses the fact that Poincare transformations are being unitary implemented. It has a classical analogy where field covariance shows that Poincare transformations are canonically implemented. Covariance is self-reproducing: products of covariant fields are covariant. We recall these properties and use them to formulate the notion of covariant quantum fields on noncommutative spacetimes. In this way all our earlier results on dressing, statistics, etc. for Moyal spacetimes are derived transparently. For the Voros algebra, covariance and the *-operation are in conflict so that there are no covariant Voros fields compatible with *, a result we found earlier. The notion of Drinfeld twist underlying much of the preceding discussion is extended to discrete abelian and nonabelian groups such as the mapping class groups of topological geons. For twists involving nonabelian groups the emergent spacetimes are nonassociative.
In this paper, we examine the relationship between general relativity and the theory of Einstein algebras. We show that according to a formal criterion for theoretical equivalence recently proposed by Halvorson (2012, 2015) and Weatherall (2015), the two are equivalent theories.
We use planar coordinates as well as hyperbolic coordinates to separate the de Sitter spacetime into two parts. These two ways of cutting the de Sitter give rise to two different spatial infinities. For spacetimes which are asymptotic to either half of the de Sitter spacetime, we are able to provide definitions of the total energy, the total linear momentum, the total angular momentum, respectively. And we prove two positive mass theorems, corresponding to these two sorts of spatial infinities, for spacelike hypersurfaces whose mean curvatures are bounded by certain constant from above.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا