While several magnetic topological semimetals have been discovered in recent years, their band structures are far from ideal, often obscured by trivial bands at the Fermi energy. Square-net materials with clean, linearly dispersing bands show potential to circumvent this issue. CeSbTe, a square-net material, features multiple magnetic field-controllable topological phases. Here, it is shown that in this material, even higher degrees of tunability can be achieved by changing the electron count at the square-net motif. Increased electron filling results in structural distortion and formation of charge density waves (CDWs). The modulation wave-vector evolves continuously leading to a region of multiple discrete CDWs and a corresponding complex Devils staircase magnetic ground state. A series of fractionally quantized magnetization plateaus are observed, which implies direct coupling between CDW and a collective spin-excitation. It is further shown that the CDW creates a robust idealized non-symmorphic Dirac semimetal, thus providing access to topological systems with rich magnetism.