Do you want to publish a course? Click here

Logarithmic corrections to the QCD component of same-sign W-pair production for VBS studies

130   0   0.0 ( 0 )
 Added by Conor Elrick
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We present the results of the first calculation of the logarithmic corrections to the QCD contribution to same-sign $W$-pair production, $ppto e^pm u_e mu^pm u_mu jj$, for same-sign charged leptons. This includes all leading logarithmic contributions which scale as $alpha_W^4 alpha_s^{2+k}log^k(hat s/p_perp^2)$. This process is important for the study of electroweak couplings and hence the QCD contributions are usually suppressed through a choice of Vector Boson Scattering (VBS) cuts. These select regions of phase space where logarithms in $hat s/p_perp^2$ are enhanced. While the logarithmic corrections lead to a small change for the cross sections, several distributions relevant for experimental studies are affected more significantly.



rate research

Read More

We describe the calculation of the QCD contribution to same-sign $W$-pair production, $ppto e^pm u_e mu^pm u_mu jj$, resumming all contributions scaling as $alpha_W^4 alpha_s^{2+k}log^k(hat s/p_perp^2)$ [arXiv:2107.06818]. These leading logarithmic contributions are enhanced by typical cuts used for Vector Boson Scattering (VBS) studies. We show that while the cross sections are little affected by these corrections, other more exclusive observables relevant for experimental studies are affected more significantly.
We demonstrate that the LHC will be sensitive to quantum correlations between two quarks inside the proton. Same-sign W-boson pair production is the most promising channel for clear measurements of double parton scattering. The left-handed nature of the coupling between quarks and W-bosons makes it a prime probe to measure parton spin correlations. We perform a detailed analysis of double parton scattering, including relevant backgrounds. The analysis reveals that measurements comparing the rate at which two muons from W boson decays are produced in the same compared to opposite hemispheres are especially sensitive to spin correlations between two quarks inside the proton. We provide estimates of the significance of the measurements as a function of the integrated luminosity.
The future runs of LHC offer a unique opportunity to measure correlations between two partons inside the proton, which have never been experimentally detected. The process of interest is the production of two positively charged W-bosons decaying in the muon channel. We present a detailed analysis of proton-proton collisions at $sqrt{s}$ = 13 TeV, where we combine Monte Carlo event generators with our calculations of parton correlations. We carefully compare double parton scattering to relevant background processes and trace a path towards a clean signal sample. Several observables are constructed to demonstrate the effect of parton correlations with respect to clear benchmark values for uncorrelated scatterings. We find that especially spin correlations can be responsible for large effects in the variables we study, because of their direct relation with the parton angular momentum and, therefore, the directions of the muon momenta. We estimate the significance of the measurements as a function of the integrated luminosity and conclude that the LHC has the potential to detect, or put strong limits on, parton correlations in the near future.
136 - S. Actis , M. Beneke , P. Falgari 2008
We calculate the parametrically dominant next-to-next-to-leading order corrections to four-fermion production e^- e^+ -> mu^- nubar_mu u dbar + X at centre-of-mass energies near the W-pair production threshold employing the method of unstable-particle effective theory. In total the correction is small, leading to a shift of 3 MeV in the W-mass measurement. We also discuss the implementation of realistic cuts and provide a result for the interference of single-Coulomb and soft radiative corrections that can easily be extended to include an arbitrary number of Coulomb photons.
We perform an analytic calculation of the one-loop amplitude for the W-boson mediated process 0 to d u-bar Q Q-bar l-bar l, retaining the mass for the quark Q. The momentum of each of the massive quarks is expressed as the sum of two massless momenta and the corresponding heavy quark spinor is expressed as a sum of two massless spinors. Using a special choice for the heavy quark spinors we obtain analytic expressions for the one-loop amplitudes which are amenable to fast numerical evaluation. The full next-to-leading order (NLO) calculation of hadron+hadron to W(to e nu) b b-bar with massive b-quarks is included in the program MCFM. A comparison is performed with previous published work.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا