The first simultaneous X-ray broad-band view of Mrk 110 with XMM-Newton and NuSTAR


Abstract in English

(Abridged) Soft and hard X-ray excesses, compared to the continuum power-law shape between ~2-10 keV, are common features observed in the spectra of active galactic nuclei (AGN) and are associated with the accretion disc-corona system around the supermassive black hole. However, the dominant process at work is still highly debated and has been proposed to be either relativistic reflection or Comptonisation. We aim to characterise the main X-ray spectral physical components from the bright bare Broad Line Seyfert 1 AGN Mrk 110, and the physical process(es) at work in its disc-corona system viewed almost face-on. We perform the X-ray broad-band spectral analysis thanks to two simultaneous XMM-Newton and NuSTAR observations performed on November 16-17 2019 and April 5-6 2020, we also use for the spectral analysis above 3 keV the deep NuSTAR observation obtained in January 2017. The broad-band X-ray spectra of Mrk 110 are characterised by the presence of a prominent and absorption-free smooth soft X-ray excess, moderately broad OVII and FeKalpha emission lines and a lack of a strong Compton hump. The continuum above ~3keV is very similar at both epochs, while some variability (stronger when brighter) is present for the soft X-ray excess. A combination of soft and hard Comptonisation by a warm and hot corona, respectively, plus mildly relativistic disc reflection reproduce the broadband X-ray continuum very well. The inferred warm corona temperature, kT_warm~0.3 keV, is similar to the values found in other sub-Eddington AGN, whereas the hot corona temperature, kT_hot~21-31 keV (depending mainly on the assumed hot corona geometry), is found to be in the lower range of the values measured in AGN.

Download