Tilting flat bands in an empty microcavity


Abstract in English

Recently microcavities with anisotropic materials are shown to be able to create novel bands with non-zero local Berry curvature. The anisotropic refractive index of the cavity layer is believed to be critical in opening an energy gap at the tilted Dirac points. In this work, we show that an anticrossing between a cavity mode and a Bragg mode can also form within an empty microcavity without any birefringent materials. Flat bands are observed within the energy gap due to the particular refractive index distribution of the sample. The intrinsic TE-TM splitting and XY splitting induce the squeezing of the cavity modes in momentum space, so that the flat bands are spin-dependently tilted. Our results pave the way to investigate the spin orbit coupling of photons in a simple microcavity without anisotropic cavity layers.

Download