No Arabic abstract
We present redshift-zero synthetic observational data considering dust attenuation and dust emission for the thirty galaxies of the Auriga project, calculated with the SKIRT radiative transfer code. The post-processing procedure includes components for star-forming regions, stellar sources, and diffuse dust taking into account stochastic heating of dust grains. This allows us to obtain realistic high-resolution broadband images and fluxes from ultraviolet to sub-millimeter wavelengths. For the diffuse dust component, we consider two mechanisms for assigning dust to gas cells in the simulation. In one case, only the densest or the coldest gas cells are allowed to have dust, while in the other case this condition is relaxed to allow a larger number of dust-containing cells. The latter approach yields galaxies with a larger radial dust extent and an enhanced dust presence in the inter-spiral regions. At a global scale, we compare Auriga galaxies with observations by deriving dust scaling relations using SED fitting. At a resolved scale, we make a multi-wavelength morphological comparison with nine well-resolved spiral galaxies from the DustPedia observational database. We find that for both dust assignment methods, although the Auriga galaxies show a good overall agreement with observational dust properties, they exhibit a slightly higher specific dust mass. The multi-wavelength morphological analysis reveals a good agreement between the Auriga and the observed galaxies in the optical wavelengths. In the mid and far-infrared wavelengths, Auriga galaxies appear smaller and more centrally concentrated in comparison to their observed counterparts. We publicly release the multi-observer images and fluxes in 50 commonly used broadband filters.
The magnetic fields observed in the Milky~Way and nearby galaxies appear to be in equipartition with the turbulent, thermal, and cosmic ray energy densities, and hence are expected to be dynamically important. However, the origin of these strong magnetic fields is still unclear, and most previous attempts to simulate galaxy formation from cosmological initial conditions have ignored them altogether. Here, we analyse the magnetic fields predicted by the simulations of the Auriga Project, a set of 30 high-resolution cosmological zoom simulations of Milky~Way-like galaxies, carried out with a moving-mesh magneto-hydrodynamics code and a detailed galaxy formation physics model. We find that the magnetic fields grow exponentially at early times owing to a small-scale dynamo with an e-folding time of roughly $100,rm{Myr}$ in the center of halos until saturation occurs around $z=2-3$, when the magnetic energy density reaches about $10%$ of the turbulent energy density with a typical strength of $10-50,rm{mu G}$. In the galactic centers the ratio between magnetic and turbulent energy remains nearly constant until $z=0$. At larger radii, differential rotation in the disks leads to linear amplification that typically saturates around $z=0.5$ to $z=0$. The final radial and vertical variations of the magnetic field strength can be well described by two joint exponential profiles, and are in good agreement with observational constraints. Overall, the magnetic fields have only little effect on the global evolution of the galaxies as it takes too long to reach equipartition. We also demonstrate that our results are well converged with numerical resolution.
Context: The Faraday rotation measure (RM) is often used to study the magnetic field strength and orientation within the ionized medium of the Milky Way. Observations indicate a RM in the spiral arms that exceeds the commonly assumed range. This raises the question of under what conditions spiral arms create such strong RM. Aims: We investigate the effect of spiral arms on Galactic RMs through shock compression of the interstellar medium (ISM). It has recently been suggested that the Sagittarius spiral arm creates a strong peak in RM where the line of sight (LOS) is tangent to the arm, and that enhanced RM follows along an intersecting LOS. We seek to understand the physical conditions that give rise to this effect and the role of viewing geometry. Methods: We apply a MHD simulation of the multi-phase ISM in a Milky Way type spiral galaxy disk in combination with radiative transfer to evaluate different tracers of spiral arm structures. For observers embedded in the disk, dust intensity, synchrotron emission and the kinematics of molecular gas observations are derived to identify spiral arm tangents. RMs are calculated through the disk and evaluated for different observer positions. The observers perspective is related to the parameters of the local bubble surrounding the observer. Results: We reproduce a scattering of tangent points for different tracers of about $6^circ$ per spiral arm similar to the Milky Way. As for the RM, the model shows that compression of the ISM and associated amplification of the magnetic field in spiral arms enhances RM by a few hundred rad $m^{-2}$ on top of the mean contribution of the disk. The arm-inter-arm contrast in RM along the LOS is approximately 10 in the inner Galaxy, fading to ~2 in the outer Galaxy. We identify a shark-fin like pattern in the RM Milky Way observations as well as the synthetic data that is characteristic for spiral arms.
Galaxies are surrounded by massive gas reservoirs (i.e. the circumgalactic medium; CGM) which play a key role in their evolution. The properties of the CGM, which are dependent on a variety of internal and environmental factors, are often inferred from absorption line surveys which rely on a limited number of single lines-of-sight. In this work we present an analysis of 28 galaxy haloes selected from the Auriga project, a cosmological magneto-hydrodynamical zoom-in simulation suite of isolated Milky Way-mass galaxies, to understand the impact of CGM diversity on observational studies. Although the Auriga haloes are selected to populate a narrow range in halo mass, our work demonstrates that the CGM of L* galaxies is extremely diverse: column densities of commonly observed species span ~3-4 dex and their covering fractions range from ~5 to 90 per cent. Despite this diversity, we identify the following correlations: 1) the covering fractions (CF) of hydrogen and metals of the Auriga haloes positively correlate with stellar mass, 2) the CF of H I, C IV, and Si II anticorrelate with active galactic nucleus luminosity due to ionization effects, and 3) the CF of H I, C IV, and Si II positively correlate with galaxy disc fraction due to outflows populating the CGM with cool and dense gas. The Auriga sample demonstrates striking diversity within the CGM of L* galaxies, which poses a challenge for observations reconstructing CGM characteristics from limited samples, and also indicates that long-term merger assembly history and recent star formation are not the dominant sculptors of the CGM.
With Gaia Data Release 2, the astronomical community is entering a new era of multidimensional surveys of the Milky Way. This new phase-space view of our Galaxy demands new tools for comparing observations to simulations of Milky-Way-mass galaxies in a cosmological context, to test the physics of both dark matter and galaxy formation. We present ananke, a framework for generating synthetic phase-space surveys from high-resolution baryonic simulations, and use it to generate a suite of synthetic surveys resembling Gaia DR2 in data structure, magnitude limits, and observational errors. We use three cosmological simulations of Milky-Way-mass galaxies from the Latte suite of the Feedback In Realistic Environments (FIRE) project, which feature self-consistent clustering of star formation in dense molecular clouds and thin stellar/gaseous disks in live cosmological halos with satellite dwarf galaxies and stellar halos. We select three solar viewpoints from each simulation to generate nine synthetic Gaia-like surveys. We sample synthetic stars by assuming each star particle (of mass 7070 $M_{odot}$) represents a single stellar population. At each viewpoint, we compute dust extinction from the simulated gas metallicity distribution and apply a simple error model to produce a synthetic Gaia-like survey that includes both observational properties and a pointer to the generating star particle. We provide the complete simulation snapshot at $z = 0$ for each simulated galaxy. We describe data access points, the data model, and plans for future upgrades. These synthetic surveys provide a tool for the scientific community to test analysis methods and interpret Gaia data.
Modern hydrodynamical simulations reproduce many properties of the real universe. These simulations model various physical processes, but many of these are included using `subgrid models due to resolution limits. Although different subgrid models have been successful in modelling the effects of supernovae (SNe) feedback on galactic properties, it remains unclear if, and by how much, these differing implementations affect observable halo gas properties. In this work, we use `zoom-in cosmological initial conditions of two volumes selected to resemble the Local Group (LG) evolved with both the Auriga and EAGLE galaxy formation models. While the subgrid physics models in both simulations reproduce realistic stellar components of $L^star$ galaxies, they exhibit different gas properties. Namely, Auriga predicts that the Milky Way (MW) is almost baryonically closed, whereas EAGLE suggests that only half of the expected baryons reside within the halo. Furthermore, EAGLE predicts that this baryon deficiency extends to the LG, ($r leq 1 mathrm{~Mpc}$). The baryon deficiency in EAGLE is likely due to SNe feedback at high redshift, which generates halo-wide outflows, with high covering fractions and radial velocities, which both eject baryons and significantly impede cosmic gas accretion. Conversely, in Auriga, gas accretion is almost unaffected by feedback. These differences appear to be the result of the different energy injection methods from SNe to gas. Our results suggest that both quasar absorption lines and fast radio burst dispersion measures could constrain these two regimes with future observations.