No Arabic abstract
Active speaker detection (ASD) seeks to detect who is speaking in a visual scene of one or more speakers. The successful ASD depends on accurate interpretation of short-term and long-term audio and visual information, as well as audio-visual interaction. Unlike the prior work where systems make decision instantaneously using short-term features, we propose a novel framework, named TalkNet, that makes decision by taking both short-term and long-term features into consideration. TalkNet consists of audio and visual temporal encoders for feature representation, audio-visual cross-attention mechanism for inter-modality interaction, and a self-attention mechanism to capture long-term speaking evidence. The experiments demonstrate that TalkNet achieves 3.5% and 2.2% improvement over the state-of-the-art systems on the AVA-ActiveSpeaker dataset and Columbia ASD dataset, respectively. Code has been made available at: https://github.com/TaoRuijie/TalkNet_ASD.
Automatic audio-visual expression recognition can play an important role in communication services such as tele-health, VOIP calls and human-machine interaction. Accuracy of audio-visual expression recognition could benefit from the interplay between the two modalities. However, most audio-visual expression recognition systems, trained in ideal conditions, fail to generalize in real world scenarios where either the audio or visual modality could be missing due to a number of reasons such as limited bandwidth, interactors orientation, caller initiated muting. This paper studies the performance of a state-of-the art transformer when one of the modalities is missing. We conduct ablation studies to evaluate the model in the absence of either modality. Further, we propose a strategy to randomly ablate visual inputs during training at the clip or frame level to mimic real world scenarios. Results conducted on in-the-wild data, indicate significant generalization in proposed models trained on missing cues, with gains up to 17% for frame level ablations, showing that these training strategies cope better with the loss of input modalities.
Audio-visual speech recognition (AVSR) can effectively and significantly improve the recognition rates of small-vocabulary systems, compared to their audio-only counterparts. For large-vocabulary systems, however, there are still many difficulties, such as unsatisfactory video recognition accuracies, that make it hard to improve over audio-only baselines. In this paper, we specifically consider such scenarios, focusing on the large-vocabulary task of the LRS2 database, where audio-only performance is far superior to video-only accuracies, making this an interesting and challenging setup for multi-modal integration. To address the inherent difficulties, we propose a new fusion strategy: a recurrent integration network is trained to fuse the state posteriors of multiple single-modality models, guided by a set of model-based and signal-based stream reliability measures. During decoding, this network is used for stream integration within a hybrid recognizer, where it can thus cope with the time-variant reliability and information content of its multiple feature inputs. We compare the results with end-to-end AVSR systems as well as with competitive hybrid baseline models, finding that the new fusion strategy shows superior results, on average even outperforming oracle dynamic stream weighting, which has so far marked the -- realistically unachievable -- upper bound for standard stream weighting. Even though the pure lipreading performance is low, audio-visual integration is helpful under all -- clean, noisy, and reverberant -- conditions. On average, the new system achieves a relative word error rate reduction of 42.18% compared to the audio-only model, pointing at a high effectiveness of the proposed integration approach.
Immersive audio-visual perception relies on the spatial integration of both auditory and visual information which are heterogeneous sensing modalities with different fields of reception and spatial resolution. This study investigates the perceived coherence of audiovisual object events presented either centrally or peripherally with horizontally aligned/misaligned sound. Various object events were selected to represent three acoustic feature classes. Subjective test results in a simulated virtual environment from 18 participants indicate a wider capture region in the periphery, with an outward bias favoring more lateral sounds. Centered stimulus results support previous findings for simpler scenes.
Active speaker detection is an important component in video analysis algorithms for applications such as speaker diarization, video re-targeting for meetings, speech enhancement, and human-robot interaction. The absence of a large, carefully labeled audio-visual dataset for this task has constrained algorithm evaluations with respect to data diversity, environments, and accuracy. This has made comparisons and improvements difficult. In this paper, we present the AVA Active Speaker detection dataset (AVA-ActiveSpeaker) that will be released publicly to facilitate algorithm development and enable comparisons. The dataset contains temporally labeled face tracks in video, where each face instance is labeled as speaking or not, and whether the speech is audible. This dataset contains about 3.65 million human labeled frames or about 38.5 hours of face tracks, and the corresponding audio. We also present a new audio-visual approach for active speaker detection, and analyze its performance, demonstrating both its strength and the contributions of the dataset.
We propose a method to address audio-visual target speaker enhancement in multi-talker environments using event-driven cameras. State of the art audio-visual speech separation methods shows that crucial information is the movement of the facial landmarks related to speech production. However, all approaches proposed so far work offline, using frame-based video input, making it difficult to process an audio-visual signal with low latency, for online applications. In order to overcome this limitation, we propose the use of event-driven cameras and exploit compression, high temporal resolution and low latency, for low cost and low latency motion feature extraction, going towards online embedded audio-visual speech processing. We use the event-driven optical flow estimation of the facial landmarks as input to a stacked Bidirectional LSTM trained to predict an Ideal Amplitude Mask that is then used to filter the noisy audio, to obtain the audio signal of the target speaker. The presented approach performs almost on par with the frame-based approach, with very low latency and computational cost.