Direct Modeling for Computational Fluid Dynamics and the Construction of High-order Compact Scheme for Compressible Flow Simulations


Abstract in English

Computational fluid dynamics is a direct modeling of physical laws in a discretized space. The basic physical laws include the mass, momentum and energy conservations, physically consistent transport process, and similar domain of dependence and influence between the physical reality and the numerical representation. Therefore, a physically soundable numerical scheme must be a compact one which involves the closest neighboring cells within the domain of dependence for the solution update under a CFL number $(sim 1 )$. In the construction of explicit high-order compact scheme, subcell flow distributions or the equivalent degree of freedoms beyond the cell averaged flow variables must be evolved and updated, such as the gradients of the flow variables inside each control volume. The direct modeling of flow evolution under generalized initial condition will be developed in this paper. The direct modeling will provide the updates of flow variables differently on both sides of a cell interface and limit high-order time derivatives of the flux function nonlinearly in case of discontinuity in time, such as a shock wave moving across a cell interface within a time step. The direct modeling unifies the nonlinear limiters in both space for the data reconstruction and time for the time-dependent flux transport. Under the direct modeling framework, as an example, the high-order compact gas-kinetic scheme (GKS) will be constructed. The scheme shows significant improvement in terms of robustness, accuracy, and efficiency in comparison with the previous high-order compact GKS.

Download