Do you want to publish a course? Click here

Echoes of novel black-bounce spacetimes

71   0   0.0 ( 0 )
 Added by Zheng-Wen Long
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the evolution of electromagnetic field and scalar field under the background of novel black-bounce spacetimes. Our results show an obvious echoes signal that can characterize the properties of novel black-bounce spacetimes, and a detailed analysis about the characteristics of the echoes signal is given. By studying the quasinormal ringdown of the three states of novel black-bounce spacetimes, we find that the echoes signal only appears when $a>2M$ in this spacetime, but when the parameter $a$ increases to a threshold, the echoes signal will be transformed into a quasinormal ringdown of the two-way traversable wormhole.

rate research

Read More

Given the recent development of rotating black-bounce-Kerr spacetimes, for both theoretical and observational purposes it becomes interesting to see whether it might be possible to construct black-bounce variants of the entire Kerr-Newman family. Specifically, herein we shall consider black-bounce-Reissner-Nordstrom and black-bounce-Kerr-Newman spacetimes as particularly simple and clean everywhere-regular black hole mimickers that deviate from the Kerr-Newman family in a precisely controlled and minimal manner, and smoothly interpolate between regular black holes and traversable wormholes. While observationally the electric charges on astrophysical black holes are likely to be extremely low, $|Q|/m ll 1$, introducing any non-zero electric charge has a significant theoretical impact. In particular, we verify the existence of a Killing tensor (and associated Carter-like constant) but without the full Killing tower of principal tensor and Killing-Yano tensor, also we discuss how, assuming general relativity, the black-bounce-Kerr-Newman solution requires an interesting, non-trivial matter/energy content.
We develop a number of novel black-bounce spacetimes. These are specific regular black holes where the area radius always remains non-zero, thereby leading to a throat that is either timelike (corresponding to a traversable wormhole), spacelike (corresponding to a bounce into a future universe), or null (corresponding to a one-way wormhole). We shall first perform a general analysis of the regularity conditions for such a spacetime, and then consider a number of specific examples. The examples are constructed using a mass function similar to that of Fan--Wang, and fall into several particular cases, such as the original Simpson--Visser model, a Bardeen-type model, and other generalizations thereof. We shall analyse the regularity, the energy conditions, and the causal structure of these models. The main results are several new geometries, more complex than before, with two or more horizons, with the possibility of an extremal case. We shall derive a general theorem regarding static space-time regularity, and another general theorem regarding (non)-satisfaction of the classical energy conditions.
100 - Alex Simpson , Matt Visser 2018
So-called regular black holes are a topic currently of considerable interest in the general relativity and astrophysics communities. Herein we investigate a particularly interesting regular black hole spacetime described by the line element [ ds^{2}=-left(1-frac{2m}{sqrt{r^{2}+a^{2}}}right)dt^{2}+frac{dr^{2}}{1-frac{2m}{sqrt{r^{2}+a^{2}}}} +left(r^{2}+a^{2}right)left(dtheta^{2}+sin^{2}theta ;dphi^{2}right). ] This spacetime neatly interpolates between the standard Schwarzschild black hole and the Morris-Thorne traversable wormhole; at intermediate stages passing through a black-bounce (into a future incarnation of the universe), an extremal null-bounce (into a future incarnation of the universe), and a traversable wormhole. As long as the parameter $a$ is non-zero the geometry is everywhere regular, so one has a somewhat unusual form of regular black hole, where the origin $r=0$ can be either spacelike, null, or timelike. Thus this spacetime generalizes and broadens the class of regular black holes beyond those usually considered.
We consider a very simple model for gravitational wave echoes from black hole merger ringdowns which may arise from local Lorentz symmetry violations that modify graviton dispersion relations. If the corrections are sufficiently soft so they do not remove the horizon, the reflection of the infalling waves which trigger the echoes is very weak. As an example, we look at the dispersion relation of a test scalar field corrected by roton-like operators depending only on spatial momenta, in Gullstrand-Painleve coordinates. The near-horizon regions of a black hole do become reflective, but only very weakly. The resulting ``bounces of infalling waves can yield repetitive gravity wave emissions but their power is very small. This implies that to see any echoes from black holes we really need an egregious departure from either standard GR or effective field theory, or both. One possibility to realize such strong echoes is the recently proposed classical firewalls which replace black hole horizons with material shells surrounding timelike singularities.
We determine the causal structure of the McVittie spacetime for a cosmological model with an asymmetric bounce. The analysis includes the computation of trapping horizons, regular, trapped, and anti-trapped regions, and the integration of the trajectories of radial null geodesics before, during, and after the bounce. We find a trapped region since the beginning of the contracting phase up to shortly before the bounce, thus showing the existence of a black hole. When the universe reaches a certain minimum scale in the contracting phase, the trapping horizons disappear and the central singularity becomes naked. These results suggest that neither a contracting nor an expanding universe can accommodate a black hole at all times.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا