Do you want to publish a course? Click here

New limit on high Galactic latitude PeV gamma-ray flux from Tibet AS-gamma data

59   0   0.0 ( 0 )
 Added by Andrii Neronov
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Tibet AS-gamma collaboration has recently reported detection of gamma-rays with energies up to Peta-electronvolt from parts of the Galactic plane. We notice that the analysis of gamma-ray flux by the Tibet AS-gamma experiment also implies an upper bound on the diffuse gamma-ray flux from high Galactic latitudes(|b|>20 degrees) in the energy range between 100 TeV and 1 PeV. This bound is up to an order-of-magnitude stronger than previously derived bounds from GRAPES3, KASCADE and CASA-MIA experiments. We discuss the new TibetAS-gamma limit on high Galactic latitude gamma-ray flux in the context of possible mechanisms of multi-messenger (gamma-ray and neutrino) emission from nearby cosmic ray sources, dark matter decays and large scale cosmic ray halo of the Milky Way.



rate research

Read More

Tibet-AS$gamma$ collaboration has recently reported a measurement of diffuse $gamma$-ray flux from the outer Galactic disk in the energy range reaching PeV. We complement this measurement with the Fermi/LAT measurement of the diffuse flux from the same sky region and study the pion decay model of the combined Fermi/LAT+Tibet-AS$gamma$ spectrum. We find that within such a model the average cosmic ray spectrum in the outer Galactic disk has the same characteristic features as the local cosmic ray spectrum. In particular, it experiences a hardening at several hundred GV rigidity and a knee feature in the PV rigidity range. The slope of the average cosmic ray spectrum above the break is close to the locally observed slope of the helium spectrum $gammasimeq 2.5$, but is harder than the slope of the local proton spectrum in the same rigidity range. Although the combination of Fermi/LAT and Tibet-AS$gamma$ data points to the presence of the knee in the average cosmic ray spectrum, the quality of the data is not yet sufficient for the study of knee shape and cosmic ray composition.
The Tibet AS$gamma$ experiment provided the first measurement of the total diffuse gamma-ray emission from the Galactic disk in the sub-PeV energy range. Based on the analysis of TeV sources included in the HGPS catalog, we predict the expected contribution of unresolved sources in the two angular windows of the Galactic plane observed by Tibet AS$gamma$. We show that the sum of this additional diffuse component due to unresolved sources and the truly diffuse emission, due to cosmic ray interaction with the interstellar medium, well saturates the Tibet data, without the need to introduce a progressive hardening of the cosmic-ray spectrum toward the Galactic center.
174 - Ruo-Yu Liu , Xiang-Yu Wang 2021
Very recently, diffuse gamma rays with $0.1,{rm PeV}<E_gamma <1,rm PeV$ have been discovered from the Galactic disk by the Tibet air shower array and muon detector array (Tibet AS+MD array). While the measured sub-PeV flux may be compatible with the hadronic origin in the conventional Galactic cosmic ray propagation model, we find that it is in possible tension with the non-detection of Galactic neutrino emissions by the IceCube neutrino telescope. We further find that the presence of an extra cosmic ray component of relatively hard spectrum, which is probably related to the Cygnus Cocoon region and other PeV cosmic-ray sources in the Galactic disk, would alleviate the tension. This scenario implies the existence of an extreme accelerator of either protons or electrons beyond PeV in the Cygnus region, and predicts the continuation of the gamma-ray spectrum of Cygnus Cocoon up to 1 PeV with a possible hardening beyond $sim 30-100,$TeV.
The Tibet ASgamma experiment just reported their measurement of sub-PeV diffuse gamma ray emission from the Galactic disk, with the highest energy up to 957 TeV. These gamma-rays are most likely the hadronic origin by cosmic ray interaction with interstellar gas in the Galaxy. This measurement provides direct evidence to the hypothesis that the Galactic cosmic rays can be accelerated beyond PeV energies. In this work, we try to explain the sub-PeV diffuse gamma-ray spectrum within cosmic rays diffusive propagation model. We find there is a tension between the sub-PeV diffuse gamma rays and the local cosmic ray spectrum. To describe the sub-PeV diffuse gamma-ray flux, it generally requires larger local cosmic-ray flux than measurement in the knee region. We further calculate the PeV neutrino flux from the cosmic ray propagation model. Even all of these sub-PeV diffuse gamma rays originate from the propagation, the Galactic neutrinos only account for less than ~15% of observed flux, most of which are still from extragalactic sources.
Coupling of axion-like particles (ALPs) to photons in the presence of background magnetic field affects propagation of gamma-rays through magnetized environments. This results in modification in the gamma-ray spectra of sources in or behind galaxy clusters. We search for the ALP induced effects in the Fermi/LAT and MAGIC telescope spectra of the radio galaxy NGC 1275 embedded in Perseus galaxy cluster. We report an order-of-magnitude improved upper limit on the ALP-photon coupling constant in the 0.1-10 neV mass range from non-detection of the ALP imprints on the gamma-ray spectra. The improved upper limit extends into the coupling range in which the ALP particles could form the dark matter. We estimate the sensitivity improvements for the ALP search achievable with extension of the measurements to lower and higher energies with e-ASTROGAM and CTA and show that the gamma-ray probe of ALPs with masses in $10^{-11}-10^{-7}$ eV range will be have order-of-magnitude better sensitivity compared to ground-based experiment IAXO.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا