We study averages over squarefree moduli of the size of exponential sums with polynomial phases. We prove upper bounds on various moments of such sums, and obtain evidence of un-correlation of exponential sums associated to different suitably unrelated and generic polynomials. The proofs combine analytic arguments with the algebraic interpretation of exponential sums and their monodromy groups.
We study the average of the product of the central values of two $L$-functions of modular forms $f$ and $g$ twisted by Dirichlet characters to a large prime modulus $q$. As our principal tools, we use spectral theory to develop bounds on averages of shifted convolution sums with differences ranging over multiples of $q$, and we use the theory of Deligne and Katz to estimate certain complete exponential sums in several variables and prove new bounds on bilinear forms in Kloosterman sums with power savings when both variables are near the square root of $q$. When at least one of the forms $f$ and $g$ is non-cuspidal, we obtain an asymptotic formula for the mixed second moment of twisted $L$-functions with a power saving error term. In particular, when both are non-cuspidal, this gives a significant improvement on M.~Youngs asymptotic evaluation of the fourth moment of Dirichlet $L$-functions. In the general case, the asymptotic formula with a power saving is proved under a conjectural estimate for certain bilinear forms in Kloosterman sums.
In this paper, we consider the following $(A, B)$-polynomial $f$ over finite field: $$f(x_0,x_1,cdots,x_n)=x_0^Ah(x_1,cdots,x_n)+g(x_1,cdots,x_n)+P_B(1/x_0),$$ where $h$ is a Deligne polynomial of degree $d$, $g$ is an arbitrary polynomial of degree $< dB/(A+B)$ and $P_B(y)$ is a one-variable polynomial of degree $le B$. Let $Delta$ be the Newton polyhedron of $f$ at infinity. We show that $Delta$ is generically ordinary if $pequiv 1 mod D$, where $D$ is a constant only determined by $Delta$. In other words, we prove that the Adolphson--Sperber conjecture is true for $Delta$.
Francis Castro, et al [2] computed the exact divisibility of families of exponential sums associated to binomials $F(X) = aX^{d_1} + bX^{d_2}$ over $mathbb{F}_p$, and a conjecture is presented for related work. Here we study this question.
The explicit formulas expressing harmonic sums via alternating Euler sums (colored multiple zeta values) are given, and some explicit evaluations are given as applications.
We define a new kind of classical digamma function, and establish its some fundamental identities. Then we apply the formulas obtained, and extend tools developed by Flajolet and Salvy to study more general Euler type sums. The main results of Flajolet and Salvys paper cite{FS1998} are the immediate corollaries of main results in this paper. Furthermore, we provide some parameterized extensions of Ramanujan-type identities that involve hyperbolic series. Some interesting new consequences and illustrative examples are considered.