Do you want to publish a course? Click here

Linear stability of a rotating liquid column revisited

158   0   0.0 ( 0 )
 Added by Ganesh Subramanian
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We revisit the somewhat classical problem of the linear stability of a rigidly rotating liquid column in this communication. Although literature pertaining to this problem dates back to 1959, the relation between inviscid and viscous stability criteria has not yet been clarified. While the viscous criterion for stability, given by $We = n^2+k^2-1$, is both necessary and sufficient, this relation has only been shown to be sufficient in the inviscid case. Here, $We = rho Omega^2 a^3/gamma$ is the Weber number and measures the relative magnitudes of the centrifugal and surface tension forces, with $Omega$ being the angular velocity of the rigidly rotating column, $a$ the column radius, $rho$ the density of the fluid, and $gamma$ the surface tension coefficient; $k$ and $n$ denote the axial and azimuthal wavenumbers of the imposed perturbation. We show that the subtle difference between the inviscid and viscous criteria arises from the surprisingly complicated picture of inviscid stability in the $We-k$ plane. For all $n >1$, the viscously unstable region, corresponding to $We > n^2+k^2-1$, contains an infinite hierarchy of inviscidly stable islands ending in cusps, with a dominant leading island. Only the dominant island, now infinite in extent along the $We$ axis, persists for $n= 1$. This picture may be understood, based on the underlying eigenspectrum, as arising from the cascade of coalescences between a retrograde mode, that is the continuation of the cograde surface-tension-driven mode across the zero Doppler frequency point, and successive retrograde Coriolis modes constituting an infinite hierarchy.



rate research

Read More

We explore the effect of forcing on the linear shear flow or plane Couette flow, which is also the background flow in the very small region of the Keplerian accretion disk. We show that depending on the strength of forcing and boundary conditions suitable for the systems under consideration, the background plane shear flow and, hence, accretion disk velocity profile modifies to parabolic flow, which is plane Poiseuille flow or Couette-Poiseuille flow, depending on the frame of reference. In the presence of rotation, plane Poiseuille flow becomes unstable at a smaller Reynolds number under pure vertical as well as threedimensional perturbations. Hence, while rotation stabilizes plane Couette flow, the same destabilizes plane Poiseuille flow faster and forced local accretion disk. Depending on the various factors, when local linear shear flow becomes Poiseuille flow in the shearing box due to the presence of extra force, the flow becomes unstable even for the Keplerian rotation and hence turbulence will pop in there. This helps in resolving a long standing problem of sub-critical transition to turbulence in hydrodynamic accretion disks and laboratory plane Couette flow.
In this article we consider the linear stability of the two-dimensional flow induced by the linear stretching of a surface in the streamwise direction. The basic flow is a rare example of an exact analytical solution of the Navier-Stokes equations. Using results from a large Reynolds number asymptotic study and a highly accurate spectral numerical method we show that this flow is linearly unstable to disturbances in the form of Tollmien-Schlichting waves. Previous studies have shown this flow is linearly stable. However, our results show that this is only true for G{o}rtler-type disturbances.
We analyze the instability of a vortex column in a dilute polymer solution at large $textit{Re}$ and $textit{De}$ with $textit{El} = textit{De}/textit{Re}$, the elasticity number, being finite. Here, $textit{Re} = Omega_0 a^2/ u_s$ and $textit{De} = Omega_0 tau$ are, respectively, the Reynolds and Deborah numbers based on the core angular velocity ($Omega_0$), the radius of the column ($a$), the solvent-based kinematic viscosity ($ u_s = mu_s/rho$), and the polymeric relaxation time ($tau$). The stability of small-amplitude perturbations in this distinguished limit is governed by the elastic Rayleigh equation whose spectrum is parameterized by $ textrm{E} = textit{El}(1-beta)$, $beta$ being the ratio of the solvent to the solution viscosity. The neglect of the relaxation terms, in the said limit, implies that the polymer solution supports undamped elastic shear waves propagating relative to the base-state flow. The existence of these shear waves leads to multiple (three) continuous spectra associated with the elastic Rayleigh equation in contrast to just one for the original Rayleigh equation. Further, unlike the neutrally stable inviscid case, an instability of the vortex column arises for finite E due to a pair of elastic shear waves being driven into a resonant interaction under the differential convection by the irrotational shearing flow outside the core. An asymptotic analysis for the Rankine profile shows the absence of an elastic threshold; although, for small E, the growth rate of the unstable discrete mode is transcendentally small, being O$(textrm{E}^2e^{-1/textrm{E}^{frac{1}{2}}})$. An accompanying numerical investigation shows that the instability persists for smooth vorticity profiles, provided the radial extent of the transition region (from the rotational core to the irrotational exterior) is less than a certain $textrm{E}$-dependent threshold.
330 - S. V. Nazarenko 2009
It is proposed that critical balance - a scale-by-scale balance between the linear propagation and nonlinear interaction time scales - can be used as a universal scaling conjecture for determining the spectra of strong turbulence in anisotropic wave systems. Magnetohydrodynamic (MHD), rotating and stratified turbulence are considered under this assumption and, in particular, a novel and experimentally testable energy cascade scenario and a set of scalings of the spectra are proposed for low-Rossby-number rotating turbulence. It is argued that in neutral fluids, the critically balanced anisotropic cascade provides a natural path from strong anisotropy at large scales to isotropic Kolmogorov turbulence at very small scales. It is also argued that the kperp^{-2} spectra seen in recent numerical simulations of low-Rossby-number rotating turbulence may be analogous to the kperp^{-3/2} spectra of the numerical MHD turbulence in the sense that they could be explained by assuming that fluctuations are polarised (aligned) approximately as inertial waves (Alfven waves for MHD).
154 - X. Liang , D. S. Deng , J.-C. Nave 2010
Motivated by complex multi-fluid geometries currently being explored in fibre-device manufacturing, we study capillary instabilities in concentric cylindrical flows of $N$ fluids with arbitrary viscosities, thicknesses, densities, and surface tensions in both the Stokes regime and for the full Navier--Stokes problem. Generalizing previous work by Tomotika (N=2), Stone & Brenner (N=3, equal viscosities) and others, we present a full linear stability analysis of the growth modes and rates, reducing the system to a linear generalized eigenproblem in the Stokes case. Furthermore, we demonstrate by Plateau-style geometrical arguments that only axisymmetric instabilities need be considered. We show that the N=3 case is already sufficient to obtain several interesting phenomena: limiting cases of thin shells or low shell viscosity that reduce to N=2 problems, and a system with competing breakup processes at very different length scales. The latter is demonstrated with full 3-dimensional Stokes-flow simulations. Many $N > 3$ cases remain to be explored, and as a first step we discuss two illustrative $N to infty$ cases, an alternating-layer structure and a geometry with a continuously varying viscosity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا