With the development of condensed-matter physics and nanotechnology, attention has turned to the fields near and on surfaces that result from interactions between electric dipole radiation and mesoscale structures. It is hoped that studying these fields will further our understanding of optical phenomena in nano-optics, quantum mechanics, electromagnetics and sensing using solid-state photon emitters. Here, we describe a method for implementing dynamic electric and magnetic dipoles in the frequency domain into a non-singular field-only surface method. We show that the effect of dipoles can conveniently be described as a relatively simple term in the integral equations, which fully represents how they drive the fields and interactions. Also, due to the non-singularity, our method can calculate the electric and magnetic fields on the surfaces of objects in both near and far fields with the same accuracy, which makes it an ideal tool to investigate nano-optical phenomena. The derivation of the framework is given and tested against a Mie theory alike formula. Some interesting examples are shown involving the interaction of dipoles with different types of mesoscale structures including parabolic nano-antenna and gold probes.