No Arabic abstract
Recently deep learning-based image compression methods have achieved significant achievements and gradually outperformed traditional approaches including the latest standard Versatile Video Coding (VVC) in both PSNR and MS-SSIM metrics. Two key components of learned image compression frameworks are the entropy model of the latent representations and the encoding/decoding network architectures. Various models have been proposed, such as autoregressive, softmax, logistic mixture, Gaussian mixture, and Laplacian. Existing schemes only use one of these models. However, due to the vast diversity of images, it is not optimal to use one model for all images, even different regions of one image. In this paper, we propose a more flexible discretized Gaussian-Laplacian-Logistic mixture model (GLLMM) for the latent representations, which can adapt to different contents in different images and different regions of one image more accurately. Besides, in the encoding/decoding network design part, we propose a concatenated residual blocks (CRB), where multiple residual blocks are serially connected with additional shortcut connections. The CRB can improve the learning ability of the network, which can further improve the compression performance. Experimental results using the Kodak and Tecnick datasets show that the proposed scheme outperforms all the state-of-the-art learning-based methods and existing compression standards including VVC intra coding (4:4:4 and 4:2:0) in terms of the PSNR and MS-SSIM. The project page is at url{https://github.com/fengyurenpingsheng/Learned-image-compression-with-GLLMM}
In this paper, we propose a learned video codec with a residual prediction network (RP-Net) and a feature-aided loop filter (LF-Net). For the RP-Net, we exploit the residual of previous multiple frames to further eliminate the redundancy of the current frame residual. For the LF-Net, the features from residual decoding network and the motion compensation network are used to aid the reconstruction quality. To reduce the complexity, a light ResNet structure is used as the backbone for both RP-Net and LF-Net. Experimental results illustrate that we can save about 10% BD-rate compared with previous learned video compression frameworks. Moreover, we can achieve faster coding speed due to the ResNet backbone. This project is available at https://github.com/chaoliu18/RPLVC.
For learned image compression, the autoregressive context model is proved effective in improving the rate-distortion (RD) performance. Because it helps remove spatial redundancies among latent representations. However, the decoding process must be done in a strict scan order, which breaks the parallelization. We propose a parallelizable checkerboard context model (CCM) to solve the problem. Our two-pass checkerboard context calculation eliminates such limitations on spatial locations by re-organizing the decoding order. Speeding up the decoding process more than 40 times in our experiments, it achieves significantly improved computational efficiency with almost the same rate-distortion performance. To the best of our knowledge, this is the first exploration on parallelization-friendly spatial context model for learned image compression.
Recent works on learned image compression perform encoding and decoding processes in a full-resolution manner, resulting in two problems when deployed for practical applications. First, parallel acceleration of the autoregressive entropy model cannot be achieved due to serial decoding. Second, full-resolution inference often causes the out-of-memory(OOM) problem with limited GPU resources, especially for high-resolution images. Block partition is a good design choice to handle the above issues, but it brings about new challenges in reducing the redundancy between blocks and eliminating block effects. To tackle the above challenges, this paper provides a learned block-based hybrid image compression (LBHIC) framework. Specifically, we introduce explicit intra prediction into a learned image compression framework to utilize the relation among adjacent blocks. Superior to context modeling by linear weighting of neighbor pixels in traditional codecs, we propose a contextual prediction module (CPM) to better capture long-range correlations by utilizing the strip pooling to extract the most relevant information in neighboring latent space, thus achieving effective information prediction. Moreover, to alleviate blocking artifacts, we further propose a boundary-aware postprocessing module (BPM) with the edge importance taken into account. Extensive experiments demonstrate that the proposed LBHIC codec outperforms the VVC, with a bit-rate conservation of 4.1%, and reduces the decoding time by approximately 86.7% compared with that of state-of-the-art learned image compression methods.
We propose the first practical learned lossless image compression system, L3C, and show that it outperforms the popular engineered codecs, PNG, WebP and JPEG 2000. At the core of our method is a fully parallelizable hierarchical probabilistic model for adaptive entropy coding which is optimized end-to-end for the compression task. In contrast to recent autoregressive discrete probabilistic models such as PixelCNN, our method i) models the image distribution jointly with learned auxiliary representations instead of exclusively modeling the image distribution in RGB space, and ii) only requires three forward-passes to predict all pixel probabilities instead of one for each pixel. As a result, L3C obtains over two orders of magnitude speedups when sampling compared to the fastest PixelCNN variant (Multiscale-PixelCNN). Furthermore, we find that learning the auxiliary representation is crucial and outperforms predefined auxiliary representations such as an RGB pyramid significantly.
Although deep learning based image compression methods have achieved promising progress these days, the performance of these methods still cannot match the latest compression standard Versatile Video Coding (VVC). Most of the recent developments focus on designing a more accurate and flexible entropy model that can better parameterize the distributions of the latent features. However, few efforts are devoted to structuring a better transformation between the image space and the latent feature space. In this paper, instead of employing previous autoencoder style networks to build this transformation, we propose an enhanced Invertible Encoding Network with invertible neural networks (INNs) to largely mitigate the information loss problem for better compression. Experimental results on the Kodak, CLIC, and Tecnick datasets show that our method outperforms the existing learned image compression methods and compression standards, including VVC (VTM 12.1), especially for high-resolution images. Our source code is available at https://github.com/xyq7/InvCompress.