Do you want to publish a course? Click here

Lattices in Tate modules

70   0   0.0 ( 0 )
 Added by Bjorn Poonen
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Refining a theorem of Zarhin, we prove that given a $g$-dimensional abelian variety $X$ and an endomorphism $u$ of $X$, there exists a matrix $A in operatorname{M}_{2g}(mathbb{Z})$ such that each Tate module $T_ell X$ has a $mathbb{Z}_ell$-basis on which the action of $u$ is given by $A$.



rate research

Read More

81 - Yuri G. Zarhin 2020
We deal with $g$-dimensional abelian varieties $X$ over finite fields. We prove that there is an universal constant (positive integer) $N=N(g)$ that depends only on $g$ that enjoys the following properties. If a certain self-product of $X$ carries an exotic Tate class then the self-product $X^{2N}$of $X$ also carries an exotic Tate class. This gives a positive answer to a question of Kiran Kedlaya.
129 - Christophe Cornut 2018
We define and study Harder-Narasimhan filtrations on Breuil-Kisin-Fargues modules and related objects relevant to p-adic Hodge theory.
214 - Eugen Hellmann 2010
We consider stacks of filtered phi-modules over rigid analytic spaces and adic spaces. We show that these modules parametrize p-adic Galois representations of the absolute Galois group of a p-adic field with varying coefficients over an open substack containing all classical points. Further we study a period morphism (defined by Pappas and Rapoport) from a stack parametrizing integral data and determine the image of this morphism.
165 - Eugen Hellmann 2012
We investigate the relation between p-adic Galois representations and overconvergent (phi,Gamma)-modules in families. Especially we construct a natural open subspace of a family of (phi,Gamma)-modules, over which it is induced by a family of Galois-representations.
Tates central extension originates from 1968 and has since found many applications to curves. In the 80s Beilinson found an n-dimensional generalization: cubically decomposed algebras, based on ideals of bounded and discrete operators in ind-pro limits of vector spaces. Kato and Beilinson independently defined (n-)Tate categories whose objects are formal iterated ind-pro limits in general exact categories. We show that the endomorphism algebras of such objects often carry a cubically decomposed structure, and thus a (higher) Tate central extension. Even better, under very strong assumptions on the base category, the n-Tate category turns out to be just a category of projective modules over this type of algebra.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا