When analyzing the galaxy bispectrum measured from spectroscopic surveys, it is imperative to account for the effects of non-uniform survey geometry. Conventionally, this is done by convolving the theory model with the the window function; however, the computational expense of this prohibits full exploration of the bispectrum likelihood. In this work, we provide a new class of estimators for the unwindowed bispectrum; a quantity that can be straightforwardly compared to theory. This builds upon the work of Philcox (2021) for the power spectrum, and comprises two parts (both obtained from an Edgeworth expansion): a cubic estimator applied to the data, and a Fisher matrix, which deconvolves the bispectrum components. In the limit of weak non-Gaussianity, the estimator is minimum-variance; furthermore, we give an alternate form based on FKP weights that is close-to-optimal and easy to compute. As a demonstration, we measure the binned bispectrum monopole of a suite of simulations both using conventional estimators and our unwindowed equivalents. Computation times are comparable, except that the unwindowed approach requires a Fisher matrix, computable in an additional $mathcal{O}(100)$ CPU-hours. Our estimator may be straightforwardly extended to measure redshift-space distortions and the components of the bispectrum in arbitrary separable bases. The techniques of this work will allow the bispectrum to straightforwardly included in the cosmological analysis of current and upcoming survey data.