Do you want to publish a course? Click here

Plasma vortices driven by magnetic torsion generated by electric currents in non-magnetic planetary wakes

105   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In non-collisional magnetized astrophysical plasmas, vortices can form as it is the case of the Venus plasma wake where Lundin et al. (2013) identified a large vortex through the integration of data of many orbits from the Venus Express (VEX) spacecraft. On the one hand, our purpose is to develop a theoretical foundation in order to explain the occurrence and formation of vortices in non-collisional astrophysical plasmas. On the other hand, to apply the latter in order to study the vorticity in the wakes of Venus and Mars. We introduce two theorems and two corollaries, which may be applicable to any non-collisional plasma system, that relate the vorticity to electromagnetic variables such as the magnetic field and the electric current density. We also introduce a toy vortex model for the wakes of non-magnetized planetary bodies. From the proposed theorems and model and using magnetic data of the VEX and the Mars Global Surveyor (MGS) spacecraft, we identify vortices in the wakes of Venus and Mars in single spacecraft wake crossings. We also identify a spatial coincidence between current density and vorticity maxima confirming the consistency of our theorems and model. We conclude that vortices in non-collisional magnetized plasmas are always linked to electric currents and that both vortices and currents always coexist. This suggests that the mechanism that produces this type of vortices is the mutual interaction between the electric current and the magnetic field, that to a first approximation is explained considering that plasma currents due to a non-zero net charge density induce magnetic fields that modify the existing field and also produce a helical field configuration that drives charged particles along helical trajectories.



rate research

Read More

In extreme pressures and temperature gradients, heat flow and magnetic fields are strongly coupled, but although theoretical work shows that strong heat flows can cause significant changes in the magnetic field, it has long proven difficult to measure these changes experimentally. Here we describe the first direct measurement of Nernst-driven magnetic cavitation, in which heat flow causes expulsion of the magnetic field from the hottest regions of a plasma. Using laser-driven proton radiography, we demonstrate that Nernst advection dominates changes to the magnetic field in underdense plasmas on these nanosecond timescales. Due to the increased magnetic field strength at the edge of the hot plasma, the observed magnetic cavitation can be accurately described by fluid models of heat flow, despite mean free paths much longer than the temperature gradient. Expulsion of the magnetic field from hot regions of the plasma reduces the effectiveness of magnetised fusion techniques and disrupts magnetised plasma experiments.
Magnetic droplets are dynamical solitons that can be generated by locally suppressing the dynamical damping in magnetic films with perpendicular anisotropy. To date, droplets have been observed only in nanocontact spin-torque oscillators operated by spin-polarized electrical currents. Here, we experimentally demonstrate that magnetic droplets can be nucleated and sustained by pure spin currents in nanoconstriction-based spin Hall devices. Micromagnetic simulations support our interpretation of the data, and indicate that in addition to the stationary droplets, propagating solitons can be also generated in the studied system, which can be utilized for the information transmission in spintronic applications.
Metre-scale plasma wakefield accelerators have imparted energy gain approaching 10 gigaelectronvolts to single nano-Coulomb electron bunches. To reach useful average currents, however, the enormous energy density that the driver deposits into the wake must be removed efficiently between shots. Yet mechanisms by which wakes dissipate their energy into surrounding plasma remain poorly understood. Here, we report ps-time-resolved, grazing-angle optical shadowgraphic measurements and large-scale particle-in-cell simulations of ion channels emerging from broken wakes that electron bunches from the SLAC linac generate in tenuous lithium plasma. Measurements show the channel boundary expands radially at 1 million metres-per-second for over a nanosecond. Simulations show that ions and electrons that the original wake propels outward, carrying 90 percent of its energy, drive this expansion by impact-ionizing surrounding neutral lithium. The results provide a basis for understanding global thermodynamics of multi-GeV plasma accelerators, which underlie their viability for applications demanding high average beam current.
We present a new magnetic field generation mechanism in underdense plasmas driven by the beating of two, co-propagating, Laguerre-Gaussian (LG) orbital angular momentum (OAM) laser pulses with different frequencies and also different twist indices. The resulting twisted ponderomotive force drives up an electron plasma wave with a helical rotating structure. To second order, there is a nonlinear rotating current leading to the onset of an intense, static axial magnetic field, which persists over a long time in the plasma (ps scale) after the laser pulses have passed by. The results are confirmed in three-dimensional particle-in-cell simulations and also theoretical analysis. For the case of 300 fs duration, 3.8x10^17 W/cm^2 peak laser intensity we observe magnetic field of up to 0.4 MG. This new method of magnetic field creation may find applications in charged beam collimation and controlled fusion.
The kinetic features of secondary magnetic reconnection in a single flux rope undergoing internal kink instability are studied by means of three-dimensional Particle-in-Cell simulations. Several signatures of secondary magnetic reconnection are identified in the plane perpendicular to the flux rope: a quadrupolar electron and ion density structure and a bipolar Hall magnetic field develop in proximity of the reconnection region. The most intense electric fields form perpendicularly to the local magnetic field, and a reconnection electric field is identified in the plane perpendicular to the flux rope. An electron current develops along the reconnection line in the opposite direction of the electron current supporting the flux rope magnetic field structure. Along the reconnection line, several bipolar structures of the electric field parallel to the magnetic field occur making the magnetic reconnection region turbulent. The reported signatures of secondary magnetic reconnection can help to localize magnetic reconnection events in space, astrophysical and fusion plasmas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا