No Arabic abstract
We use a smoothed particle hydrodynamics (SPH) code to examine the effects of a binary companion on a Be star disk for a range of disk viscosities and misalignment angles, i.e. the angle between the orbital plane and the primarys spin axis. The density structures in the disk due to the tidal interaction with the binary companion are investigated. Expanding on our previous work, the shape and density structure of density enhancements due to the binary companion are analyzed and the changes in observed interferometric features due to these orbiting enhancements are also predicted. We find that larger misalignment angles and viscosity values result in more tightly wound spiral arms with densities that fall-off more slowly with radial distance from the central star. We show that the orbital phase has very little effect on the structure of the spiral density enhancements. We demonstrate that these spiral features can be detected with an interferometer in H$alpha$ and K-band emission. We also show that the spiral features affect the axis ratios determined by interferometry depending on the orientation of these features and the observer. For example, our simulations show that the axis ratios can vary by 20% for our co-planar binary disk system depending on the location of the disk density enhancements.
Be stars are surrounded by outflowing circumstellar matter structured in the form of decretion discs. They are often members of binary systems, where it is expected that the decretion disc interacts both radiatively and gravitationally with the companion. In this work we study how various orbital (period, mass ratio and eccentricity) and disc (viscosity) parameters affect the disc structure in coplanar systems. We simulate such binaries with the use of a smoothed particle hydrodynamics code. The main effects of the secondary on the disc are its truncation and the accumulation of material inwards of truncation. We find two cases with respect to the effects of eccentricity: (i) In circular or nearly circular prograde orbits, the disc maintains a rotating, constant in shape, configuration, which is locked to the orbital phase. The disc is smaller in size, more elongated and more massive for low viscosity parameter, small orbital separation and/or high mass ratio. (ii) Highly eccentric orbits are more complex, with the disc structure and total mass strongly dependent on the orbital phase and the distance to the secondary. We also study the effects of binarity in the disc continuum emission. Since the infrared and radio SED are sensitive to the disc size and density slope, the truncation and matter accumulation result in considerable modifications in the emergent spectrum. We conclude that binarity can serve as an explanation for the variability exhibited in observations of Be stars, and that our model can be used to detect invisible companions.
We use a smoothed particle hydrodynamics (SPH) code to examine the effects of misaligned binary companions on Be star discs. We systematically vary the degree of misalignment between the disc and the binary orbit, as well as the disc viscosity and orbital period to study their effects on the density in the inner and outer parts of the disc. We find that varying the degree of misalignment, the viscosity, and the orbital period affects both the truncation radius and the density structure of the outer disc, while the inner disc remains mostly unaffected. We also investigate the tilting of the disc in the innermost part of the disc and find the tilt increases with radius until reaching a maximum around 5 stellar radii. The direction of the line of nodes, with respect to the equator of the central star, is found to be offset compared to the orbital line of nodes, and to vary periodically in time, with a period of half a orbital phase. We also compare the scale height of our discs with the analytical scale height of an isothermal disc, which increases with radius as $r^{1.5}$. We find that this formula reproduces the scale height well for both aligned and misaligned systems but underestimates the scale height in regions of the disc where density enhancements develop.
We show, through a simple patchy reconnection model, that retracting reconnected flux tubes may present elongated regions relatively devoid of plasma, as well as long lasting, dense central hot regions. Reconnection is assumed to happen in a small patch across a Syrovatskii (non-uniform) current sheet (CS) with skewed magnetic fields. The background magnetic pressure has its maximum at the center of the CS plane, and decreases toward the edges of the plane. The reconnection patch creates two V-shaped reconnected tubes that shorten as they retract in opposite directions, due to magnetic tension. One of them moves upward toward the top edge of the CS, and the other one moves downward toward the top of the underlying arcade. Rotational discontinuities (RDs) propagate along the legs of the tubes and generate parallel super-sonic flows that collide at the center of the tube. There, gas dynamics shocks that compress and heat the plasma are launched outwardly. The descending tube moves through the bottom part of the CS where it expands laterally in response to the background magnetic pressure. This effect may decrease plasma density by 30 % to 50 % of background levels. This tube will arrive at the top of the arcade that will slow it down to a stop. Here, the perpendicular dynamics is halted, but the parallel dynamics continues along its legs; the RDs are shut down, and the gas is rarified to even lower densities. The hot postshock regions continue evolving, determining a long lasting hot region on top of the arcade. We provide an observational method based on total emission measure and mean temperature, that indicates where in the CS the tube has been reconnected.
Polidan (1976) suggested that Be stars showing the CaII IR triplet in emission are interacting binaries. With the advent of the Gaia satellite, which will host a spectrometer to observe stars in the range 8470--8750 AA, we carried out a spectroscopic survey of 150 Be stars, including Be binaries. We show that the Ca II triplet in emission, often connected with emission in Paschen lines, is an indicator of a peculiar environment in a Be star disc rather than a signature of an interacting binary Be star. However, Ca II emission without visible emission in Paschen lines is observed in interacting binary stars, as well as in peculiar objects. During the survey, a new interacting Be binary - HD 81357 - was discovered.
In cases where both components of a binary system show oscillations, asteroseismology has been proposed as a method to identify the system. For KIC 2568888, observed with $Kepler$, we detect oscillation modes for two red giants in a single power density spectrum. Through an asteroseismic study we investigate if the stars have similar properties, which could be an indication that they are physically bound into a binary system. While one star lies on the red giant branch (RGB), the other, more evolved star, is either a RGB or asymptotic-giant-branch star. We found similar ages for the red giants and a mass ratio close to 1. Based on these asteroseismic results we propose KIC 2568888 as a rare candidate binary system ($sim 0.1%$ chance). However, when combining the asteroseismic data with ground-based $BVI$ photometry we estimated different distances for the stars, which we cross-checked with $Gaia$ DR2. From $Gaia$ we obtained for one object a distance between and broadly consistent with the distances from $BVI$ photometry. For the other object we have a negative parallax with a not yet reliable $Gaia$ distance solution. The derived distances challenge a binary interpretation and may either point to a triple system, which could explain the visible magnitudes, or, to a rare chance alignment ($sim 0.05%$ chance based on stellar magnitudes). This probability would even be smaller, if calculated for close pairs of stars with a mass ratio close to unity in addition to similar magnitudes, which may indeed indicate that a binary scenario is more favourable.