Tempering stochastic density functional theory


Abstract in English

We introduce a tempering approach with stochastic density functional theory (sDFT), labeled t-sDFT, which reduces the statistical errors in the estimates of observable expectation values. This is achieved by rewriting the electronic density as a sum of a warm component complemented by colder correction(s). Since the warm component is larger in magnitude but faster to evaluate, we use many more stochastic orbitals for its evaluation than for the smaller-sized colder correction(s). This results in a significant reduction of the statistical fluctuations and the bias compared to sDFT for the same computational effort. We the methods performance on large hydrogen-passivated silicon nanocrystals (NCs), finding a reduction in the systematic error in the energy by more than an order of magnitude, while the systematic errors in the forces are also quenched. Similarly, the statistical fluctuations are reduced by factors of around 4-5 for the total energy and around 1.5-2 for the forces on the atoms. Since the embedding in t-sDFT is fully stochastic, it is possible to combine t-sDFT with other variants of sDFT such as energy-window sDFT and embedded-fragmented sDFT.

Download