No Arabic abstract
Network traffic classification that is widely applicable and highly accurate is valuable for many network security and management tasks. A flexible and easily configurable classification framework is ideal, as it can be customized for use in a wide variety of networks. In this paper, we propose a highly configurable and flexible machine learning traffic classification method that relies only on statistics of sequences of packets to distinguish known, or approved, traffic from unknown traffic. Our method is based on likelihood estimation, provides a measure of certainty for classification decisions, and can classify traffic at adjustable certainty levels. Our classification method can also be applied in different classification scenarios, each prioritizing a different classification goal. We demonstrate how our classification scheme and all its configurations perform well on real-world traffic from a high performance computing network environment.
Monitoring network traffic to identify content, services, and applications is an active research topic in network traffic control systems. While modern firewalls provide the capability to decrypt packets, this is not appealing for privacy advocates. Hence, identifying any information from encrypted traffic is a challenging task. Nonetheless, previous work has identified machine learning methods that may enable application and service identification. The process involves high level feature extraction from network packet data then training a robust machine learning classifier for traffic identification. We propose a classification technique using an ensemble of deep learning architectures on packet, payload, and inter-arrival time sequences. To our knowledge, this is the first time such deep learning architectures have been applied to the Server Name Indication (SNI) classification problem. Our ensemble model beats the state of the art machine learning methods and our up-to-date model can be found on github: url{https://github.com/niloofarbayat/NetworkClassification}
This paper provides a systematic and comprehensive survey that reviews the latest research efforts focused on machine learning (ML) based performance improvement of wireless networks, while considering all layers of the protocol stack (PHY, MAC and network). First, the related work and paper contributions are discussed, followed by providing the necessary background on data-driven approaches and machine learning for non-machine learning experts to understand all discussed techniques. Then, a comprehensive review is presented on works employing ML-based approaches to optimize the wireless communication parameters settings to achieve improved network quality-of-service (QoS) and quality-of-experience (QoE). We first categorize these works into: radio analysis, MAC analysis and network prediction approaches, followed by subcategories within each. Finally, open challenges and broader perspectives are discussed.
The open-world deployment of Machine Learning (ML) algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities such as interpretability, verifiability, and performance limitations. Research explores different approaches to improve ML dependability by proposing new models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks. In this paper, we review and organize practical ML techniques that can improve the safety and dependability of ML algorithms and therefore ML-based software. Our organization maps state-of-the-art ML techniques to safety strategies in order to enhance the dependability of the ML algorithm from different aspects, and discuss research gaps as well as promising solutions.
Traffic forecasting is a particularly challenging application of spatiotemporal forecasting, due to the time-varying traffic patterns and the complicated spatial dependencies on road networks. To address this challenge, we learn the traffic network as a graph and propose a novel deep learning framework, Traffic Graph Convolutional Long Short-Term Memory Neural Network (TGC-LSTM), to learn the interactions between roadways in the traffic network and forecast the network-wide traffic state. We define the traffic graph convolution based on the physical network topology. The relationship between the proposed traffic graph convolution and the spectral graph convolution is also discussed. An L1-norm on graph convolution weights and an L2-norm on graph convolution features are added to the models loss function to enhance the interpretability of the proposed model. Experimental results show that the proposed model outperforms baseline methods on two real-world traffic state datasets. The visualization of the graph convolution weights indicates that the proposed framework can recognize the most influential road segments in real-world traffic networks.
With the fast growing demand on new services and applications as well as the increasing awareness of data protection, traditional centralized traffic classification approaches are facing unprecedented challenges. This paper introduces a novel framework, Federated Generative Adversarial Networks and Automatic Classification (FGAN-AC), which integrates decentralized data synthesizing with traffic classification. FGAN-AC is able to synthesize and classify multiple types of service data traffic from decentralized local datasets without requiring a large volume of manually labeled dataset or causing any data leakage. Two types of data synthesizing approaches have been proposed and compared: computation-efficient FGAN (FGAN-uppercaseexpandafter{romannumeral1}) and communication-efficient FGAN (FGAN-uppercaseexpandafter{romannumeral2}). The former only implements a single CNN model for processing each local dataset and the later only requires coordination of intermediate model training parameters. An automatic data classification and model updating framework has been proposed to automatically identify unknown traffic from the synthesized data samples and create new pseudo-labels for model training. Numerical results show that our proposed framework has the ability to synthesize highly mixed service data traffic and can significantly improve the traffic classification performance compared to existing solutions.