No Arabic abstract
Symbiotic stars belong to a group of interacting binaries that display a wide variety of phenomena, including prominent outbursts connected with mass transfer, as well as stellar winds, jets, eclipses, or intrinsic variability of the components. Dozens of new symbiotic stars and candidates have been discovered in recent years. However, there are many objects which are still poorly studied. Some symbiotic candidates suspected in the literature have never been studied spectroscopically. In this contribution, we present the first results of the ongoing campaign focused on symbiotic candidates. In the first paper in the series, we study the nature of ten candidate classical symbiotic stars suspected based on their photometric behaviour, colours or abundance pattern. To confirm or reject the symbiotic nature of the studied candidates, we obtained new spectra and analysed them in detail together with available multi-frequency photometric and spectroscopic observations of the objects. Hen 3-860 and V2204 Oph are genuine symbiotic systems showing typical spectral features of burning symbiotic stars and outbursts in the last 100 years. The first object belongs to the uncommon group of eclipsing symbiotic stars. V1988 Sgr cannot be classified as a genuine burning symbiotic star, but the scenario of an accreting-only symbiotic system cannot be ruled out. Hen 4-204 might be a bona-fide symbiotic star due to its similarity with the known symbiotic binary BD Cam. Six other symbiotic candidates (V562 Lyr, IRAS 19050+0001, EC 19249-7343, V1017 Cyg, PN K1-6, V379 Peg) are either single dwarf or giant stars or non-symbiotic binaries.
We present UBVRI photometry of three symbiotic stars ZZ CMi, TX CVn and AG Peg carried out from 1997 to 2008 in Piwnice Observatory near Torun. To search orbital periods of these stars Fourier analysis was used. For two of them, TX CVn and AG Peg, we have confirmed the earlier known periods. For ZZ CMi we found a relatively short period 218.59 days. Assuming, that the orbital period is twice longer (P=437.18 days), the double sine wave in the light curve can be interpreted by ellipsoidal effect.
Any white dwarf or neutron star that accretes enough material from a red giant companion, such that this interaction can be detected at some wavelength, is currently termed Symbiotic Star (typical P(orb)=2-3 years). In the majority of ~400 known systems, the WD burns nuclearly at its surface the accreted material, and the resulting high temperature (T(eff)=10(^5)~K) and luminosity (L(hot)=10(^3)-10(^4) Lsun) allow ionization of a large fraction of the cool giants wind, making such symbiotic stars easily recognizable through the whole Galaxy and across the Local Group. X-ray observations are now revealing the existence of a parallel (and larger ?) population of optically-quiet, accreting-only symbiotic stars. Accretion flows and disks, ionization fronts and shock, complex 3D geometries and new evolution channels are gaining relevance and are reshaping our understanding of symbiotic stars. We review the different types of symbiotic stars currently in the family and their variegated outburst behaviors through an unified evolution scheme connecting them all.
Symbiotic stars show emission across the electromagnetic spectrum from a wide array of physical processes. At cm-waves both synchrotron and thermal emission is seen, often highly variable and associated with outbursts in the optical and X-rays. Most models of the radio emission include an ionized region within the dense wind of the red giant star, that is kept ionized by activity on the white dwarf companion or its accretion disk. In some cases there is on-going shell burning on the white dwarf due to its high mass accretion rate or a prior nova eruption, in other cases nuclear fusion occurs only occasionally as recurrent nova events. In this study we measure the spectral indices of a sample of symbiotic systems in the Southern Hemisphere using the Australia Telescope Compact Array. Putting our data together with results from other surveys, we derive the optical depths and brightness temperatures of some well-known symbiotic stars. Using parallax distances from Gaia Data Release 3, we determine the sizes and characteristic electron densities in the radio emission regions. The results show a range of a factor of 10^4 in radio luminosity, and a factor of 100 in linear size. These numbers are consistent with a picture where the rate of shell burning on the white dwarf determines the radio luminosity. Therefore, our findings also suggest that radio luminosity can be used to determine whether a symbiotic star is powered by accretion alone or also by shell burning.
We present new multicolour UBVRcIc photometric observations of symbiotic stars, EG And, Z And, BF Cyg, CH Cyg, CI Cyg, V1016 Cyg, V1329 Cyg, AG Dra, RS Oph, AG Peg, AX Per, and the newly discovered (August 2018) symbiotic star HBHA 1704-05, we carried out during the period from 2011.9 to 2018.75. Historical photographic and visual/V data were collected for HBHA 1704-05, FG Ser and AE Ara, AR Pav, respectively. The main aim of this paper is to present our original observations of symbiotic stars and to describe the most interesting features of their light curves. For example, periodic variations, rapid variability, minima, eclipses, outbursts, apparent changes of the orbital period, etc. Our measurements were obtained by the classical photoelectric photometry (till 2016.1) and the CCD photometry. Main results of our monitoring program are summarized and some specific characteristics are pointed out for future investigation.
Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of nine white dwarf symbiotics that were not previously known to be X-ray sources and one that had previously been detected as a supersoft X-ray source. The nine new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. The Swift/XRT telescope detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component that we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component that probably originates in a region where low-velocity shocks produce X-ray emission, i.e., a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic star.............