No Arabic abstract
We address the problem of model selection for the finite horizon episodic Reinforcement Learning (RL) problem where the transition kernel $P^*$ belongs to a family of models $mathcal{P}^*$ with finite metric entropy. In the model selection framework, instead of $mathcal{P}^*$, we are given $M$ nested families of transition kernels $cP_1 subset cP_2 subset ldots subset cP_M$. We propose and analyze a novel algorithm, namely emph{Adaptive Reinforcement Learning (General)} (texttt{ARL-GEN}) that adapts to the smallest such family where the true transition kernel $P^*$ lies. texttt{ARL-GEN} uses the Upper Confidence Reinforcement Learning (texttt{UCRL}) algorithm with value targeted regression as a blackbox and puts a model selection module at the beginning of each epoch. Under a mild separability assumption on the model classes, we show that texttt{ARL-GEN} obtains a regret of $Tilde{mathcal{O}}(d_{mathcal{E}}^*H^2+sqrt{d_{mathcal{E}}^* mathbb{M}^* H^2 T})$, with high probability, where $H$ is the horizon length, $T$ is the total number of steps, $d_{mathcal{E}}^*$ is the Eluder dimension and $mathbb{M}^*$ is the metric entropy corresponding to $mathcal{P}^*$. Note that this regret scaling matches that of an oracle that knows $mathcal{P}^*$ in advance. We show that the cost of model selection for texttt{ARL-GEN} is an additive term in the regret having a weak dependence on $T$. Subsequently, we remove the separability assumption and consider the setup of linear mixture MDPs, where the transition kernel $P^*$ has a linear function approximation. With this low rank structure, we propose novel adaptive algorithms for model selection, and obtain (order-wise) regret identical to that of an oracle with knowledge of the true model class.
We provide high probability finite sample complexity guarantees for hidden non-parametric structure learning of tree-shaped graphical models, whose hidden and observable nodes are discrete random variables with either finite or countable alphabets. We study a fundamental quantity called the (noisy) information threshold, which arises naturally from the error analysis of the Chow-Liu algorithm and, as we discuss, provides explicit necessary and sufficient conditions on sample complexity, by effectively summarizing the difficulty of the tree-structure learning problem. Specifically, we show that the finite sample complexity of the Chow-Liu algorithm for ensuring exact structure recovery from noisy data is inversely proportional to the information threshold squared (provided it is positive), and scales almost logarithmically relative to the number of nodes over a given probability of failure. Conversely, we show that, if the number of samples is less than an absolute constant times the inverse of information threshold squared, then no algorithm can recover the hidden tree structure with probability greater than one half. As a consequence, our upper and lower bounds match with respect to the information threshold, indicating that it is a fundamental quantity for the problem of learning hidden tree-structured models. Further, the Chow-Liu algorithm with noisy data as input achieves the optimal rate with respect to the information threshold. Lastly, as a byproduct of our analysis, we resolve the problem of tree structure learning in the presence of non-identically distributed observation noise, providing conditions for convergence of the Chow-Liu algorithm under this setting, as well.
We consider the problem of model selection for the general stochastic contextual bandits under the realizability assumption. We propose a successive refinement based algorithm called Adaptive Contextual Bandit ({ttfamily ACB}), that works in phases and successively eliminates model classes that are too simple to fit the given instance. We prove that this algorithm is adaptive, i.e., the regret rate order-wise matches that of {ttfamily FALCON}, the state-of-art contextual bandit algorithm of Levi et. al 20, that needs knowledge of the true model class. The price of not knowing the correct model class is only an additive term contributing to the second order term in the regret bound. This cost possess the intuitive property that it becomes smaller as the model class becomes easier to identify, and vice-versa. We then show that a much simpler explore-then-commit (ETC) style algorithm also obtains a regret rate of matching that of {ttfamily FALCON}, despite not knowing the true model class. However, the cost of model selection is higher in ETC as opposed to in {ttfamily ACB}, as expected. Furthermore, {ttfamily ACB} applied to the linear bandit setting with unknown sparsity, order-wise recovers the model selection guarantees previously established by algorithms tailored to the linear setting.
Deep reinforcement learning has achieved impressive successes yet often requires a very large amount of interaction data. This result is perhaps unsurprising, as using complicated function approximation often requires more data to fit, and early theoretical results on linear Markov decision processes provide regret bounds that scale with the dimension of the linear approximation. Ideally, we would like to automatically identify the minimal dimension of the approximation that is sufficient to encode an optimal policy. Towards this end, we consider the problem of model selection in RL with function approximation, given a set of candidate RL algorithms with known regret guarantees. The learners goal is to adapt to the complexity of the optimal algorithm without knowing it textit{a priori}. We present a meta-algorithm that successively rejects increasingly complex models using a simple statistical test. Given at least one candidate that satisfies realizability, we prove the meta-algorithm adapts to the optimal complexity with $tilde{O}(L^{5/6} T^{2/3})$ regret compared to the optimal candidates $tilde{O}(sqrt T)$ regret, where $T$ is the number of episodes and $L$ is the number of algorithms. The dimension and horizon dependencies remain optimal with respect to the best candidate, and our meta-algorithmic approach is flexible to incorporate multiple candidate algorithms and models. Finally, we show that the meta-algorithm automatically admits significantly improved instance-dependent regret bounds that depend on the gaps between the maximal values attainable by the candidates.
Rectified linear units, or ReLUs, have become the preferred activation function for artificial neural networks. In this paper we consider two basic learning problems assuming that the underlying data follow a generative model based on a ReLU-network -- a neural network with ReLU activations. As a primarily theoretical study, we limit ourselves to a single-layer network. The first problem we study corresponds to dictionary-learning in the presence of nonlinearity (modeled by the ReLU functions). Given a set of observation vectors $mathbf{y}^i in mathbb{R}^d, i =1, 2, dots , n$, we aim to recover $dtimes k$ matrix $A$ and the latent vectors ${mathbf{c}^i} subset mathbb{R}^k$ under the model $mathbf{y}^i = mathrm{ReLU}(Amathbf{c}^i +mathbf{b})$, where $mathbf{b}in mathbb{R}^d$ is a random bias. We show that it is possible to recover the column space of $A$ within an error of $O(d)$ (in Frobenius norm) under certain conditions on the probability distribution of $mathbf{b}$. The second problem we consider is that of robust recovery of the signal in the presence of outliers, i.e., large but sparse noise. In this setting we are interested in recovering the latent vector $mathbf{c}$ from its noisy nonlinear sketches of the form $mathbf{v} = mathrm{ReLU}(Amathbf{c}) + mathbf{e}+mathbf{w}$, where $mathbf{e} in mathbb{R}^d$ denotes the outliers with sparsity $s$ and $mathbf{w} in mathbb{R}^d$ denote the dense but small noise. This line of work has recently been studied (Soltanolkotabi, 2017) without the presence of outliers. For this problem, we show that a generalized LASSO algorithm is able to recover the signal $mathbf{c} in mathbb{R}^k$ within an $ell_2$ error of $O(sqrt{frac{(k+s)log d}{d}})$ when $A$ is a random Gaussian matrix.
The curse of dimensionality is a widely known issue in reinforcement learning (RL). In the tabular setting where the state space $mathcal{S}$ and the action space $mathcal{A}$ are both finite, to obtain a nearly optimal policy with sampling access to a generative model, the minimax optimal sample complexity scales linearly with $|mathcal{S}|times|mathcal{A}|$, which can be prohibitively large when $mathcal{S}$ or $mathcal{A}$ is large. This paper considers a Markov decision process (MDP) that admits a set of state-action features, which can linearly express (or approximate) its probability transition kernel. We show that a model-based approach (resp.$~$Q-learning) provably learns an $varepsilon$-optimal policy (resp.$~$Q-function) with high probability as soon as the sample size exceeds the order of $frac{K}{(1-gamma)^{3}varepsilon^{2}}$ (resp.$~$$frac{K}{(1-gamma)^{4}varepsilon^{2}}$), up to some logarithmic factor. Here $K$ is the feature dimension and $gammain(0,1)$ is the discount factor of the MDP. Both sample complexity bounds are provably tight, and our result for the model-based approach matches the minimax lower bound. Our results show that for arbitrarily large-scale MDP, both the model-based approach and Q-learning are sample-efficient when $K$ is relatively small, and hence the title of this paper.