No Arabic abstract
Deep neural networks suffer from catastrophic forgetting when learning multiple knowledge sequentially, and a growing number of approaches have been proposed to mitigate this problem. Some of these methods achieved considerable performance by associating the flat local minima with forgetting mitigation in continual learning. However, they inevitably need (1) tedious hyperparameters tuning, and (2) additional computational cost. To alleviate these problems, in this paper, we propose a simple yet effective optimization method, called AlterSGD, to search for a flat minima in the loss landscape. In AlterSGD, we conduct gradient descent and ascent alternatively when the network tends to converge at each session of learning new knowledge. Moreover, we theoretically prove that such a strategy can encourage the optimization to converge to a flat minima. We verify AlterSGD on continual learning benchmark for semantic segmentation and the empirical results show that we can significantly mitigate the forgetting and outperform the state-of-the-art methods with a large margin under challenging continual learning protocols.
Continual learning aims to improve the ability of modern learning systems to deal with non-stationary distributions, typically by attempting to learn a series of tasks sequentially. Prior art in the field has largely considered supervised or reinforcement learning tasks, and often assumes full knowledge of task labels and boundaries. In this work, we propose an approach (CURL) to tackle a more general problem that we will refer to as unsupervised continual learning. The focus is on learning representations without any knowledge about task identity, and we explore scenarios when there are abrupt changes between tasks, smooth transitions from one task to another, or even when the data is shuffled. The proposed approach performs task inference directly within the model, is able to dynamically expand to capture new concepts over its lifetime, and incorporates additional rehearsal-based techniques to deal with catastrophic forgetting. We demonstrate the efficacy of CURL in an unsupervised learning setting with MNIST and Omniglot, where the lack of labels ensures no information is leaked about the task. Further, we demonstrate strong performance compared to prior art in an i.i.d setting, or when adapting the technique to supervised tasks such as incremental class learning.
Deep neural networks have shown promise in several domains, and the learned data (task) specific information is implicitly stored in the network parameters. Extraction and utilization of encoded knowledge representations are vital when data is no longer available in the future, especially in a continual learning scenario. In this work, we introduce {em flashcards}, which are visual representations that {em capture} the encoded knowledge of a network as a recursive function of predefined random image patterns. In a continual learning scenario, flashcards help to prevent catastrophic forgetting and consolidating knowledge of all the previous tasks. Flashcards need to be constructed only before learning the subsequent task, and hence, independent of the number of tasks trained before. We demonstrate the efficacy of flashcards in capturing learned knowledge representation (as an alternative to the original dataset) and empirically validate on a variety of continual learning tasks: reconstruction, denoising, task-incremental learning, and new-instance learning classification, using several heterogeneous benchmark datasets. Experimental evidence indicates that: (i) flashcards as a replay strategy is { em task agnostic}, (ii) performs better than generative replay, and (iii) is on par with episodic replay without additional memory overhead.
A continual learning agent learns online with a non-stationary and never-ending stream of data. The key to such learning process is to overcome the catastrophic forgetting of previously seen data, which is a well known problem of neural networks. To prevent forgetting, a replay buffer is usually employed to store the previous data for the purpose of rehearsal. Previous works often depend on task boundary and i.i.d. assumptions to properly select samples for the replay buffer. In this work, we formulate sample selection as a constraint reduction problem based on the constrained optimization view of continual learning. The goal is to select a fixed subset of constraints that best approximate the feasible region defined by the original constraints. We show that it is equivalent to maximizing the diversity of samples in the replay buffer with parameters gradient as the feature. We further develop a greedy alternative that is cheap and efficient. The advantage of the proposed method is demonstrated by comparing to other alternatives under the continual learning setting. Further comparisons are made against state of the art methods that rely on task boundaries which show comparable or even better results for our method.
Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning community. However, algorithmic solutions are often difficult to re-implement, evaluate and port across different settings, where even results on standard benchmarks are hard to reproduce. In this work, we propose Avalanche, an open-source end-to-end library for continual learning research based on PyTorch. Avalanche is designed to provide a shared and collaborative codebase for fast prototyping, training, and reproducible evaluation of continual learning algorithms.
Continual (sequential) training and multitask (simultaneous) training are often attempting to solve the same overall objective: to find a solution that performs well on all considered tasks. The main difference is in the training regimes, where continual learning can only have access to one task at a time, which for neural networks typically leads to catastrophic forgetting. That is, the solution found for a subsequent task does not perform well on the previous ones anymore. However, the relationship between the different minima that the two training regimes arrive at is not well understood. What sets them apart? Is there a local structure that could explain the difference in performance achieved by the two different schemes? Motivated by recent work showing that different minima of the same task are typically connected by very simple curves of low error, we investigate whether multitask and continual solutions are similarly connected. We empirically find that indeed such connectivity can be reliably achieved and, more interestingly, it can be done by a linear path, conditioned on having the same initialization for both. We thoroughly analyze this observation and discuss its significance for the continual learning process. Furthermore, we exploit this finding to propose an effective algorithm that constrains the sequentially learned minima to behave as the multitask solution. We show that our method outperforms several state of the art continual learning algorithms on various vision benchmarks.