Do you want to publish a course? Click here

Psyquandle Coloring Quivers

140   0   0.0 ( 0 )
 Added by Sam Nelson
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We enhance the psyquandle counting invariant for singular knots and pseudoknots using quivers analogously to quandle coloring quivers. This enables us to extend the in-degree polynomial invariants from quandle coloring quiver theory to the case of singular knots and pseudoknots. As a side effect we obtain biquandle coloring quivers and in-degree polynomial invariants for classical and virtual knots and links.



rate research

Read More

119 - Jieon Kim , Sam Nelson , Minju Seo 2020
Quandle coloring quivers are directed graph-valued invariants of oriented knots and links, defined using a choice of finite quandle $X$ and set $Ssubsetmathrm{Hom}(X,X)$ of endomorphisms. From a quandle coloring quiver, a polynomial knot invariant known as the textit{in-degree quiver polynomial} is defined. We consider quandle coloring quiver invariants for oriented surface-links, represented by marked graph diagrams. We provide example computations for all oriented surface-links with ch-index up to 10 for choices of quandles and endomorphisms.
105 - Jose Ceniceros , Sam Nelson 2020
We bring cocycle enhancement theory to the case of psyquandles. Analogously to our previous work on virtual biquandle cocycle enhancements, we define enhancements of the psyquandle counting invariant via pairs of a biquandle 2-cocycle and a new function satisfying some conditions. As an application we define new single-variable and two-variable polynomial invariants of oriented pseudoknots and singular knots and links. We provide examples to show that the new invariants are proper enhancements of the counting invariant are are not determined by the Jablan polynomial.
We enhance the quandle coloring quiver invariant of oriented knots and links with quandle modules. This results in a two-variable polynomial invariant with specializes to the previous quandle module polynomial invariant as well as to the quandle counting invariant. We provide example computations to show that the enhancement is proper in the sense that it distinguishes knots and links with the same quandle module polynomial.
Biquandle brackets define invariants of classical and virtual knots and links using skein invariants of biquandle-colored knots and links. Biquandle coloring quivers categorify the biquandle counting invariant in the sense of defining quiver-valued enhancements which decategorify to the counting invariant. In this paper we unite the two ideas to define biquandle bracket quivers, providing new categorifications of biquandle brackets. In particular, our construction provides an infinite family of categorifications of the Jones polynomial and other classical skein invariants.
This survey article discusses three aspects of knot colorings. Fox colorings are assignments of labels to arcs, Dehn colorings are assignments of labels to regions, and Alexander-Briggs colorings assign labels to vertices. The labels are found among the integers modulo n. The choice of n depends upon the knot. Each type of coloring rules has an associated rule that must hold at each crossing. For the Alexander Briggs colorings, the rules hold around regions. The relationships among the colorings is explained.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا