Randomized Quantum Hamiltonian Systems


Abstract in English

We present a procedure for averaging one-parameter random unitary groups and random self-adjoint groups. Central to this is a generalization of the notion of weak convergence of a sequence of measures and the corresponding generalization of the concept of convergence in distribution. The convergence is established in determination of the sequence of compositions of independent random transformations. When sequences of compositions of independent random transformations of the shift by the Euclidean vector in space, the results obtained coincide with the central limit theorem for the sums independent random vectors. The results are applied to the dynamics of quantum systems arising random quantization of the classical Hamiltonian system.

Download