Do you want to publish a course? Click here

Multiple Steady and Oscillatory Solutions in a Collapsible Channel Flow

78   0   0.0 ( 0 )
 Added by Danyang Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study flow driven through a finite-length planar rigid channel by a fixed upstream flux, where a segment of one wall is replaced by a pre-stressed elastic beam subject to uniform external pressure. The steady and unsteady systems are solved using a finite element method. Previous studies have shown that the system can exhibit three steady states for some parameters (termed the upper, intermediate and lower steady branches, respectively). Of these, the intermediate branch is always unstable while the upper and lower steady branches can (independently) become unstable to self-excited oscillations. We show that for some parameter combinations the system is unstable to both upper and lower branch oscillations simultaneously. However, we show that these two instabilities eventually merge together for large enough Reynolds numbers, exhibiting a nonlinear limit cycle which retains characteristics of both the upper and lower branches of oscillations. Furthermore, we show that increasing the beam pre-tension suppresses the region of multiple steady states but preserves the onset of oscillations. Conversely, increasing the beam thickness (a proxy for increasing bending stiffness) suppresses both multiple steady states and the onset of oscillations.



rate research

Read More

69 - Zhaokuan Lu 2020
Experimental and numerical investigations are performed to provide an assessment of the transport behavior of an ultrasonic oscillatory two-phase flow in a microchannel. The work is inspired by the flow observed in an innovative ultrasonic fabric drying device using a piezoelectric bimorph transducer with microchannels, where a water-air two-phase flow is transported by harmonically oscillating microchannels. The flow exhibits highly unsteady behavior as the water and air interact with each other during the vibration cycles, making it significantly different from the well-studied steady flow in microchannels. The computational fluid dynamics (CFD) modeling is realized by combing the turbulence Reynolds-averaged Navier-Stokes (RANS) k-${omega}$ model with the phase-field method to resolve the dynamics of the two-phase flow. The numerical results are qualitatively validated by the experiment. Through parametric studies, we specifically examined the effects of vibration conditions (i.e., frequency and amplitude), microchannel taper angle, and wall surface contact angle (i.e., wettability) on the flow rate through the microchannel. The results will advance the potential applications where oscillatory or general unsteady microchannel two-phase flows may be present.
We investigate experimentally and theoretically diffusiophoretic separation of negatively charged particles in a rectangular channel flow, driven by CO2 dissolution from one side-wall. Since the negatively charged particles create an exclusion zone near the boundary where CO2 is introduced, we model the problem by applying a shear flow approximation in a two-dimensional configuration. From the form of the equations we define a similarity variable to transform the reaction-diffusion equations for CO2 and ions and the advection-diffusion equation for the particle distribution to ordinary differential equations. The definition of the similarity variable suggests a characteristic length scale for the particle exclusion zone. We consider height-averaged flow behaviors in rectangular channels to rationalize and connect our experimental observations with the model, by calculating the wall shear rate as functions of channel dimensions. Our observations and the theoretical model provide the design parameters such as flow speed, channel dimensions and CO2 pressure for the in-flow water cleaning systems.
In order to understand the flow profiles of complex fluids, a crucial issue concerns the emergence of spatial correlations among plastic rearrangements exhibiting cooperativity flow behaviour at the macroscopic level. In this paper, the rate of plastic events in a Poiseuille flow is experimentally measured on a confined foam in a Hele-Shaw geometry. The correlation with independently measured velocity profiles is quantified. To go beyond a limitation of the experiments, namely the presence of wall friction which complicates the relation between shear stress and shear rate, we compare the experiments with simulations of emulsion droplets based on the lattice-Boltzmann method, which are performed both with, and without, wall friction. Our results indicate a correlation between the localisation length of the velocity profiles and the localisation length of the number of plastic events. Finally, unprecedented results on the distribution of the orientation of plastic events show that there is a non-trivial correlation with the underlying local shear strain. These features, not previously reported for a confined foam, lend further support to the idea that cooperativity mechanisms, originally invoked for concentrated emulsions (Goyon et al. 2008), have parallels in the behaviour of other soft-glassy materials.
In a recent paper, Liu, Zhu and Wu (2015, {it J. Fluid Mech.} {bf 784}: 304) present a force theory for a body in a two-dimensional, viscous, compressible and steady flow. In this companion paper we do the same for three-dimensional flow. Using the fundamental solution of the linearized Navier-Stokes equations, we improve the force formula for incompressible flow originally derived by Goldstein in 1931 and summarized by Milne-Thomson in 1968, both being far from complete, to its perfect final form, which is further proved to be universally true from subsonic to supersonic flows. We call this result the textit{unified force theorem}, which states that the forces are always determined by the vector circulation $pGamma_phi$ of longitudinal velocity and the scalar inflow $Q_psi$ of transverse velocity. Since this theorem is not directly observable either experimentally or computationally, a testable version is also derived, which, however, holds only in the linear far field. We name this version the textit{testable unified force formula}. After that, a general principle to increase the lift-drag ratio is proposed.
We introduce a general decomposition of the stress tensor for incompressible fluids in terms of its components on a tensorial basis adapted to the local flow conditions, which include extensional flows, simple shear flows, and any type of mixed flows. Such a basis is determined solely by the symmetric part of the velocity gradient and allows for a straightforward interpretation of the non-Newtonian response in any local flow conditions. In steady homogeneous flows, the material functions that represent the components of the stress on the adapted basis generalize and complete the classical set of viscometric functions used to characterize the response in simple shear flows. Such a general decomposition of the stress is effective in coherently organizing and interpreting rheological data from laboratory measurements and computational studies in non-viscometric steady flows of great importance for practical applications. The decomposition of the stress in terms with clearly distinct roles is also useful in developing constitutive models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا