No Arabic abstract
In this paper we present a detailed study of the four-body decay $B^0to K^{+}pi^{-}ell^{+}ell^{-}$, where tensions with the Standard Model predictions have been observed. Our analysis of the decay with P- and S-wave contributions to the $K^{+}pi^{-}$ system develops a complete understanding of the symmetries of the distribution, in the case of massless and massive leptons. In both cases, the symmetries determine relations between the observables in the $B^0to K^{+}pi^{-}ell^{+}ell^{-}$ decay distribution. This enables us to define the complete set of observables accessible to experiments, including several that have not previously been identified. The new observables arise when the decay rate is written differentially with respect to $m_{Kpi}$. We demonstrate that experiments will be able to fit this full decay distribution with currently available data sets and investigate the sensitivity to new physics scenarios given the experimental precision that is expected in the future. The symmetry relations provide a unique handle to explore the behaviour of S-wave observables by expressing them in terms of P-wave observables, therefore minimising the dependence on poorly-known S-wave form factors. Using this approach, we construct two theoretically clean S-wave observables and explore their sensitivity to new physics. By further exploiting the symmetry relations, we obtain the first bounds on the S-wave observables using two different methods and highlight how these relations may be used as cross-checks of the experimental methodology. We identify a zero-crossing point that would be at a common dilepton invariant mass for a subset of P- and S-wave observables, and explore the information on new physics and hadronic effects that this zero point can provide.
We predict the amplitude of the $Bto K ell^+ell^-$ decay in the region of the dilepton invariant mass squared $0<q^2leq m_{J/psi}^2$, that is, at large hadronic recoil. The $Bto K$ form factors entering the factorizable part of the decay amplitude are obtained from QCD light-cone sum rules. The nonlocal effects, generated by the four-quark and penguin operators combined with the electromagnetic interaction, are calculated at $q^2<0$, far below the hadronic thresholds. For hard-gluon contributions we employ the QCD factorization approach. The soft-gluon nonfactorizable contributions are estimated from QCD light-cone sum rules. The result of the calculation is matched to the hadronic dispersion relation in the variable $q^2$, which is then continued to the kinematical region of the decay. The overall effect of nonlocal contributions in $Bto Kell^+ell^-$ at large hadronic recoil is moderate. The main uncertainty of the predicted $Bto K ell^+ell^-$ partial width is caused by the $Bto K$ form factors. Furthermore, the isospin asymmetry in this decay is expected to be very small. We investigate the deviation of the observables from the Standard Model predictions by introducing a generic new physics contribution to the effective Hamiltonian.
Ratios of branching fractions of semileptonic B decays, $(B to H mu mu)$ over $(B to H ee)$ with $H=K, K^*,X_s, K_0(1430), phi, ldots$ are sensitive probes of lepton universality. In the Standard Model, the underlying flavor changing neutral current process $brightarrow s ell ell$ is lepton flavor universal. However models with new flavor violating physics above the weak scale can give substantial non-universal contributions. The leading contributions from such new physics can be parametrized by effective dimension six operators involving left- or right-handed quarks. We show that in the double ratios $R_{X_s}/R_K$, $R_{K^*}/R_K$ and $R_phi/R_K$ the dependence on new physics coupling to left-handed quarks cancels out. Thus a measurement of any of these double ratios is a clean probe of flavor nonuniversal physics coupling to right-handed quarks. We also point out that the observables $R_{X_s}$, $R_{K^*}$, $R_{K_0(1430)}$ and $R_phi$ depend on the same combination of Wilson coefficients and therefore satisfy simple consistency relations.
The present status of the LHC anomalies found in exclusive semileptonic $bto sell^+ell^-$ decays is discussed with special emphasis on the exclusive 4-body angular distribution $B to K^*(to Kpi)ell^+ell^-$. The treatment of hadronic uncertainties in this mode is briefly reviewed, and some of the analyses in the literature are critically reassessed. The global picture provided by the global fit points to a coherent pattern of deviations with a significance substantially above 4$sigma$ for different New Physics scenarios. Finally, we propose as the next step in the field to focus on the study of optimized observables that compare electron and muon modes, sensitive to lepton-flavour universality violations and free from hadronic uncertainties (including charm) in the SM, the so called $Q_i$ observables.
One of the fundamental predictions of the Standard Model is Lepton Flavour Universality. Any deviation from this prediction would indicate the existence of physics beyond the Standard Model. Recent LHCb measurements present a pattern of deviations from this prediction in rare B-meson decays. While not yet statistically significant (currently $2.2-2.6 sigma$), these measurements show an imbalance in the ratio of B-meson decays to a pair of muons in association with a Kaon and decays to a pair of electrons in association with a Kaon. If the measured deviations are indeed present in nature, new physics may mediate interactions involving a pair of same flavour leptons, a $b$- and an $s$-quark. We present the prospect for a search of new physics in this type of interactions at the LHC, in a process that involves an $s$-quark, and a final state with two leptons and a $b$-jet. The proposed search can improve the sensitivity to new physics in these processes by a factor of four compared to current searches with in the total dataset expected at the LHC.
We calculate tree-level contributions to the inclusive rare $bar B to X_{s(d)} , ell^+ell^-$ decays. At the partonic level they stem from the five-particle process $b to s(d) , q bar q , ell^+ell^-$, with $q in {u,d,s}$. While for $b to d$ transitions such five-body final states contribute at the same order in the Wolfenstein expansion compared to the three-body partonic decay, they are CKM suppressed in $b to s$ decays. In the perturbative expansion, we include all leading-order contributions, as well as partial next-to-leading order QCD and QED effects. In the case of the differential branching ratio, we present all results completely analytically in terms of polylogarithmic functions of at most weight three. We also consider the differential forward-backward asymmetry, where all except one interference could be obtained analytically. From a phenomenological point of view the newly calculated contributions are at the percent level or below.