Do you want to publish a course? Click here

Elementary amenability and almost finiteness

68   0   0.0 ( 0 )
 Added by David Kerr
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We show that every free continuous action of a countably infinite elementary amenable group on a finite-dimensional compact metrizable space is almost finite. As a consequence, the crossed products of minimal such actions are $mathcal{Z}$-stable and classified by their Elliott invariant.



rate research

Read More

We prove that a minimal second countable ample groupoid has dynamical comparison if and only if its type semigroup is almost unperforated. Moreover, we investigate to what extent a not necessarily minimal almost finite groupoid has an almost unperforated type semigroup. Finally, we build a bridge between coarse geometry and topological dynamics by characterizing almost finiteness of the coarse groupoid in terms of a new coarsely invariant property for metric spaces, which might be of independent interest in coarse geometry. As a consequence, we are able to construct new examples of almost finite principal groupoids lacking other desirable properties, such as amenability or even a-T-menability. This behaviour is in stark contrast to the case of principal transformation groupoids associated to group actions.
Generalizing Block and Weinbergers characterization of amenability we introduce the notion of uniformly finite homology for a group action on a compact space and use it to give a homological characterization of topological amenability for actions. By considering the case of the natural action of $G$ on its Stone-vCech compactification we obtain a homological characterization of exactness of the group, answering a question of Nigel Higson.
301 - David Kerr , Gabor Szabo 2018
Working within the framework of free actions of countable amenable groups on compact metrizable spaces, we show that the small boundary property is equivalent to a density version of almost finiteness, which we call almost finiteness in measure, and that under this hypothesis the properties of almost finiteness, comparison, and $m$-comparison for some nonnegative integer $m$ are all equivalent. The proof combines an Ornstein-Weiss tiling argument with the use of zero-dimensional extensions which are measure-isomorphic over singleton fibres. These kinds of extensions are also employed to show that if every free action of a given group on a zero-dimensional space is almost finite then so are all free actions of the group on spaces with finite covering dimension. Combined with recent results of Downarowicz-Zhang and Conley-Jackson-Marks-Seward-Tucker-Drob on dynamical tilings and of Castillejos-Evington-Tikuisis-White-Winter on the Toms-Winter conjecture, this implies that crossed product C$^*$-algebras arising from free minimal actions of groups with local subexponential growth on finite-dimensional spaces are classifiable in the sense of Elliotts program. We show furthermore that, for free actions of countably infinite amenable groups, the small boundary property implies that the crossed product has uniform property $Gamma$, which under minimality confirms the Toms-Winter conjecture for such crossed products by the aforementioned work of Castillejos-Evington-Tikuisis-White-Winter.
248 - Nico Spronk 2010
Let G be a locally compact group, and let A(G) and B(G) denote its Fourier and Fourier-Stieltjes algebras. These algebras are dual objects of the group and measure algebras, L^1(G) and M(G), in a sense which generalizes the Pontryagin duality theorem on abelian groups. We wish to consider the amenability properties of A(G) and B(G) and compare them to such properties for L^1(G) and M(G). For us, ``amenability properties refers to amenability, weak amenability, and biflatness, as well as some properties which are more suited to special settings, such as the hyper-Tauberian property for semisimple commutative Banach algebras. We wish to emphasize that the theory of operator spaces and completely bounded maps plays an indispensable role when studying A(G) and B(G). We also show some applications of amenability theory to problems of complemented ideals and homomorphisms.
We study the saturation properties of several classes of $C^*$-algebras. Saturation has been shown by Farah and Hart to unify the proofs of several properties of coronas of $sigma$-unital $C^*$-algebras; we extend their results by showing that some coronas of non-$sigma$-unital $C^*$-algebras are countably degree-$1$ saturated. We then relate saturation of the abelian $C^*$-algebra $C(X)$, where $X$ is $0$-dimensional, to topological properties of $X$, particularly the saturation of $CL(X)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا