Do you want to publish a course? Click here

Asymptotic analysis of V-BLAST MIMO for coherent optical wireless communications in Gamma-Gamma turbulence

109   0   0.0 ( 0 )
 Added by Yiming Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper investigates the asymptotic BER performance of coherent optical wireless communication systems in Gamma-Gamma turbulence when applying the V-BLAST MIMO scheme. A new method is proposed to quantify the performance of the system and mathematical solutions for asymptotic BER performance are derived. Counterintuitive results are shown since the diversity gain of the V-BLAST MIMO system is equal to the number of the receivers. As a consequence, it is shown that when applying the V-BLAST MIMO scheme, the symbol rate per transmission can be equal to the number of transmitters with some cost to diversity gain. This means that we can simultaneously exploit the spatial multiplexing and diversity properties of the MIMO system to achieve a higher data rate than existing schemes in a channel that displays severe turbulence and moderate attenuation.



rate research

Read More

275 - Yi Lou , Julian Cheng , Donghu Nie 2020
Underwater wireless optical communication is one of the critical technologies for buoy-based high-speed cross-sea surface communication, where the communication nodes are vertically deployed. Due to the vertically inhomogeneous nature of the underwater environment, seawater is usually vertically divided into multiple layers with different parameters that reflect the real environment. In this work, we consider a generalized UWOC channel model that contains$N$ layers. To capture the effects of air bubbles and temperature gradients on channel statistics, we model each layer by a mixture Exponential-Generalized Gamma(EGG) distribution. We derive the PDF and CDF of the end-to-end SNR in exact closed-form. Then, unified BER and outage expressions using OOK and BPSK are also derived. The performance and behavior of common vertical underwater optical communication scenarios are thoroughly analyzed through the appropriate selection of parameters. All the derived expressions are verified via Monte Carlo simulations.
This article discusses the fundamental architectures for optical wireless systems for biomedical applications. After summarizing the main applications and reporting their requirements, {we describe the characteristics of the transdermal and in-body optical channels as well as the challenges that they impose in the design of communication systems.} In more detail, we provide three possible architectures for transdermal communications, namely electro-optical (EO) monitoring, opto-electrical (OE), and all-optical (AO) for neural stimulation, which are currently under investigation, whereas for in-body communications, we provide a nano-scale AO (NAO) concept. For each architecture, we discuss the main operation principles, the technology enablers, and research directions for their development. Finally, we highlight the necessity of designing an information-theoretic framework for the analysis and design of the physical (PHY) and medium access control (MAC) layers, which takes into account the channels~characteristics.
In this work, we present a unified framework for the performance analysis of dual-hop underwater wireless optical communication (UWOC) systems with amplify-and-forward fixed gain relays in the presence of air bubbles and temperature gradients. Operating under either heterodyne detection or intensity modulation with direct detection, the UWOC is modeled by the unified mixture Exponential-Generalized Gamma distribution that we have proposed based on an experiment conducted in an indoor laboratory setup and has been shown to provide an excellent fit with the measured data under the considered lab channel scenarios. More specifically, we derive the cumulative distribution function (CDF) and the probability density function of the end-to-end signal-to-noise ratio (SNR) in exact closed-form in terms of the bivariate Foxs H function. Based on this CDF expression, we present novel results for the fundamental performance metrics such as the outage probability, the average bit-error rate (BER) for various modulation schemes, and the ergodic capacity. Additionally, very tight asymptotic results for the outage probability and the average BER at high SNR are obtained in terms of simple functions. Furthermore, we demonstrate that the dual-hop UWOC system can effectively mitigate the short range and both temperature gradients and air bubbles induced turbulences, as compared to the single UWOC link. All the results are verified via computer-based Monte-Carlo simulations.
Light amplification by stimulated emission of radiation (laser) sources have many advantages for use in high data rate optical wireless communications. In particular, the low cost and high-bandwidth properties of laser sources such as vertical-cavity surface-emitting lasers (VCSELs) make them attractive for future indoor optical wireless communications. In order to be integrated into future indoor networks, such lasers should conform to eye safety regulations determined by the international electrotechnical commission (IEC) standards for laser safety. In this paper, we provide a detailed study of beam propagation to evaluate the received power of various laser sources, based on which as well as the maximum permissible exposure (MPE) defined by the IEC 60825-1:2014 standard, we establish a comprehensive framework for eye safety analyses. This framework allows us to calculate the maximum allowable transmit power, which is crucial in the design of a reliable and safe laser-based wireless communication system. Initially, we consider a single-mode Gaussian beam and calculate the maximum permissible transmit power. Subsequently, we generalize this approach for higher-mode beams. It is shown that the M-squared-based approach for analysis of multimode lasers ensures the IEC eye safety limits, however, in some scenarios, it can be too conservative compared to the precise beam decomposition method. Laser safety analyses with consideration of optical elements such as lens and diffuser, as well as for VCSEL array have been also presented. Skin safety, as another significant factor of laser safety, has also been investigated in this paper. We have studied the impacts of various parameters such as wavelength, exposure duration and the divergence angle of laser sources on the safety analysis by presenting insightful results.
154 - Qing Xue , Xuming Fang , 2017
For future networks (i.e., the fifth generation (5G) wireless networks and beyond), millimeter-wave (mmWave) communication with large available unlicensed spectrum is a promising technology that enables gigabit multimedia applications. Thanks to the short wavelength of mmWave radio, massive antenna arrays can be packed into the limited dimensions of mmWave transceivers. Therefore, with directional beamforming (BF), both mmWave transmitters (MTXs) and mmWave receivers (MRXs) are capable of supporting multiple beams in 5G networks. However, for the transmission between an MTX and an MRX, most works have only considered a single beam, which means that they do not make full potential use of mmWave. Furthermore, the connectivity of single beam transmission can easily be blocked. In this context, we propose a single-user multi-beam concurrent transmission scheme for future mmWave networks with multiple reflected paths. Based on spatial spectrum reuse, the scheme can be described as a multiple-input multiple-output (MIMO) technique in beamspace (i.e., in the beam-number domain). Moreover, this study investigates the challenges and potential solutions for implementing this scheme, including multibeam selection, cooperative beam tracking, multi-beam power allocation and synchronization. The theoretical and numerical results show that the proposed beamspace SU-MIMO can largely improve the achievable rate of the transmission between an MTX and an MRX and, meanwhile, can maintain the connectivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا