Optimal state for Tavis-Cummings quantum battery via Bethe ansatz method


Abstract in English

In this paper, we investigate the effect of different optical field initial states on the performance of Tavis-Cummings(T-C) quantum battery. In solving the dynamical evolution of the system, we found a fast way to solve the Bethe ansatz equation. We find that the stored energy and the average charging power of the T-C quantum battery are closely related to the probability distribution of the optical field initial state in the number states. We define a quantity called the number state stored energy. With this prescribed quantity, we only need to know the probability distribution of the optical field initial state in the number states to obtain the stored energy and the average charging power of the T-C quantum battery at any moment. We propose an equal probability and equal expected value allocation method by which we can obtain two inequalities, and the two inequalities can be reduced to Jensens inequalities. By this method, we found the optimal initial state of the optical field. We found that the maximum stored energy and the maximum average charging power of the T-C quantum battery are proportional to the initial average photon number. The quantum battery can be fully charged when the initial average photon number is large enough. We found two novel phenomena, which can be described by two empirical inequalities. These two novel phenomena reflect the hypersensitivity of the stored energy of the T-C quantum battery to the number-state cavity field.

Download