Inductive Representation Based Graph Convolution Network for Collaborative Filtering


Abstract in English

In recent years, graph neural networks (GNNs) have shown powerful ability in collaborative filtering, which is a widely adopted recommendation scenario. While without any side information, existing graph neural network based methods generally learn a one-hot embedding for each user or item as the initial input representation of GNNs. However, such one-hot embedding is intrinsically transductive, making these methods with no inductive ability, i.e., failing to deal with new users or new items that are unseen during training. Besides, the number of model parameters depends on the number of users and items, which is expensive and not scalable. In this paper, we give a formal definition of inductive recommendation and solve the above problems by proposing Inductive representation based Graph Convolutional Network (IGCN) for collaborative filtering. Specifically, we design an inductive representation layer, which utilizes the interaction behavior with core users or items as the initial representation, improving the general recommendation performance while bringing inductive ability. Note that, the number of parameters of IGCN only depends on the number of core users or items, which is adjustable and scalable. Extensive experiments on three public benchmarks demonstrate the state-of-the-art performance of IGCN in both transductive and inductive recommendation scenarios, while with remarkably fewer model parameters. Our implementations are available here in PyTorch.

Download