Do you want to publish a course? Click here

Configuration mixing in strange tetraquarks $Z_{cs}$

218   0   0.0 ( 0 )
 Added by Jonathan Rosner
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The BESIII Collaboration has observed a candidate for a $c bar c s bar u$ tetraquark $Z_{cs}$ at $(3982.5^{+1.8}_{-2.6} pm 2.1)$ MeV and width $(12.8^{+5.3}_{-4.4} pm 3.0)$ MeV, while the LHCb Collaboration has observed a $Z_{cs}$ candidate in the $jpsi K^-$ channel with mass of $(4003 pm 6 ^{+4}_{-14})$ MeV and width $(131 pm 15 pm 26)$ MeV. In this note we examine the possibility that these two states are distinct eigenstates of a mixing process similar to that which gives rise to two axial-vector mesons labeled by the Particle Data Group $K_1(1270)$ and $K_1(1400)$. The main point is that on top of a $bar c c$ pair, the $Z_{cs}$ states have the same light quark content as the $K_1$-s. In the compact tetraquark picture this implies several additional states, analogous to members of the $K_1$ nonet. These states have not yet been observed, nor are they required in the molecular approach. Thus experimental discovery or exclusion of these extra states will be a critical test for competing models of exotic mesons with hidden charm.



rate research

Read More

New data from BESIII and LHCb show the existence of resonances with strangeness filling multiplets of the broken SU(3)_f symmetry, with the pattern predicted by the quark model. This is the case of the newly discovered Z_{cs} (3985) and Z_{cs}(4003), which have a natural accommodation in the tetraquark picture, as shown in this note. The quasi-degeneracy between Z_{cs} (3985) and Z_{cs}(4003) reproduces, in the strange sector, the situation observed with X(3872) and Z_c(3900). This represents a significative score in favor of the tetraquark scheme.
We investigate the $B^+to J/psi phi K^+$ decay via various rescattering diagrams. Without introducing genuine exotic resonances, it is shown that the $Z_{cs}(4000)$, $Z_{cs}(4220)$ and $X(4700)$ reported by the LHCb collaboration can be simulated by the $J/psi K^{*+}$, $psi^prime K^+$ and $psi^prime phi$ threshold cusps, respectively. These cusps are enhanced by some nearby triangle singularities. The $X(4685)$ with $J^P=1^+$ cannot be well simulated by the threshold effects in our model, which implies that it may be a genuine resonance.
Very recently, the BESIII collaboration reported a charged hidden-charm structure with strangeness in the recoil mass of $K^+$ of a process $e^+e^-to D_s^{*-}D^0K^+$ or $D_s^{-}D^{*0}K^+$, which is named as $Z_{cs}(3985)^{-}$. The newly observed charged structure can be treated as a partner structure with strangeness of well-known $Z_{c}(3885)^{-}$ reported in a process $e^+e^-to D^{*-}D^0pi^+$. In this work, we propose a novel picture to understand the nature of $Z_{cs}(3985)$. By performing a combined analysis for the line shape of the recoil mass distribution of $K^+$ at five energy points $sqrt{s}=4.628, 4.641, 4.661, 4.681, 4.698$ GeV, we find that the $Z_{cs}(3985)$ can be explained as a reflection structure of charmed-strange meson $D_{s2}^{*}(2573)$, which is produced from the open-charm decay of $Y(4660)$ with a $D_s^*$ meson. Furthermore, we predicted the angular distribution of final state $D_s^{*-}$ in process $e^+e^-to D_s^{*-}D^0K^+$ based on our proposed reaction mechanism, which may be an essential criterion to test the non-resonant nature of $Z_{cs}(3985)$ further.
The discovery of a new charged structure in the $K^+$ recoil-mass spectrum near the $D^-_s D^{*0}/D^{*-}_sD^0$ threshold, dubbed $Z_{cs}(3985)^-$, reinforce the idea that the structure of hadrons goes beyond the naive $qqq$ and the $qbar q$ structures. The existence of this state, with quark content $cbar c sbar u$, can be expected from the well-established $Z_c(3900)^pm$ and $Z_c(4020)$ states using SU(3) flavor symmetry. The $Z_c$ structures have been explained using the chiral constituent quark model in a coupled-channels calculation and, in this work, we undertake the study of the $Z_{cs}(3985)^-$ using the same model. We are able to reproduce the $K^+$ recoil-mass spectrum without any fine tuning of the model parameters. The study of the analytical structure of the S-matrix allows us to conclude that the structure is due to the presence of one virtual pole. A second state, the SU(3) flavor partner of the $Z_c(4020)$ is predicted at $sim!! 4110$ MeV/$c^2$. New states in the hidden bottom strange sector are also predicted.
218 - Zhi-Feng Sun , Chu-Wen Xiao 2020
Inspired by the newly observed $Z_{cs}^-(3985)$ by BESIII collaboration, we study the structure of this particle in the picture of $D_s^{(*)-}D^{(*)0}$ molecular state. Firstly we systematically construct the Lagrangians which describing the interaction of charmed mesons, taking into account the chiral and hidden local symmetries. With the obtained effective potentials from the Lagrangians constructed, we solve the coupled channel Bethe-Salpeter equation with the on-shell approximation. On the third Reimann sheet, a pole position of around $3982.34-i0.53$ MeV is obtained, which can be associated to the $Z_{cs}^-(3985)$ and explained as a loose bound state of $D_s^*bar{D}^*$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا