Do you want to publish a course? Click here

Methodology development and validation of integrating sphere measurement of small size tissue specimens

70   0   0.0 ( 0 )
 Added by Yijing Xie
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical imaging modalities are non-ionizing methods with significant potential for non-invasive, portable, and cost-effective medical diagnostics and treatments. The design of critical parameters of an optical imaging system depends on a thorough understanding of optical properties of the biological tissue within the purposed application. Integrating sphere technique combined with inverse adding doubling algorithm has been widely used for determination of biological tissue ex vivo. It has been studied for tissues typically with a large sample size and over a spectral range of 400 nm to 1100 nm. The aim of this study is to develop a methodology for calculating optical absorption and reduced scattering of small size biological tissues from reflectance and transmittance measurements at a wide spectral range of 400 to 1800 nm. We developed a small sample adaptor kit to allow integrating sphere measurements of samples with small sizes using a commercial device. We proposed a two-tier IAD algorithm to mitigate the profound cross-talk effect in reduced scattering using IAD. We evaluated the two-tier IAD with both simulated data by Monte Carlo Simulation and data obtained from phantom experiments. We also investigated the accuracy the proposed work flow of using small sample kit and condensed incident light beam. We found that the small sample measurements despite with condense beam size led to overestimated absorption coefficient across the whole wavelength range while the spectrum shape well preserved. Our proposed method of a two-tier IAD and small sample kit could be a useful and reliable tool to characterise optical properties of biological tissue ex vivo particularly when only small size samples are available.



rate research

Read More

Optical resonant microcavities with ultra high quality factors are widely used for biosensing. Until now, the primary method of detection has been based upon tracking the resonant wavelength shift as a function of biodetection events. One of the sources of noise in all resonant-wavelength shift measurements is the noise due to intensity fluctuations of the laser source. An alternative approach is to track the change in the quality factor of the optical cavity by using phase shift cavity ring down spectroscopy, a technique which is insensitive to the intensity fluctuations of the laser source. Here, using biotinylated microtoroid resonant cavities, we show simultaneous measurement of the quality factor and the wavelength shift by using phase shift cavity ring down spectroscopy. These measurements were performed for disassociation phase of biotin-streptavidin reaction. We found that the disassociation curves are in good agreement with the previously published results. Hence, we demonstrate not only the application of phase shift cavity ring down spectroscopy to microcavities in the liquid phase but also simultaneous measurement of the quality factor and the wavelength shift for the microcavity biosensors in the application of kinetics measurements.
Fueled by breakthrough technology developments, the biological, biomedical, and behavioral sciences are now collecting more data than ever before. There is a critical need for time- and cost-efficient strategies to analyze and interpret these data to advance human health. The recent rise of machine learning as a powerful technique to integrate multimodality, multifidelity data, and reveal correlations between intertwined phenomena presents a special opportunity in this regard. However, classical machine learning techniques often ignore the fundamental laws of physics and result in ill-posed problems or non-physical solutions. Multiscale modeling is a successful strategy to integrate multiscale, multiphysics data and uncover mechanisms that explain the emergence of function. However, multiscale modeling alone often fails to efficiently combine large data sets from different sources and different levels of resolution. We show how machine learning and multiscale modeling can complement each other to create robust predictive models that integrate the underlying physics to manage ill-posed problems and explore massive design spaces. We critically review the current literature, highlight applications and opportunities, address open questions, and discuss potential challenges and limitations in four overarching topical areas: ordinary differential equations, partial differential equations, data-driven approaches, and theory-driven approaches. Towards these goals, we leverage expertise in applied mathematics, computer science, computational biology, biophysics, biomechanics, engineering mechanics, experimentation, and medicine. Our multidisciplinary perspective suggests that integrating machine learning and multiscale modeling can provide new insights into disease mechanisms, help identify new targets and treatment strategies, and inform decision making for the benefit of human health.
The review is devoted to a discussion of new (and often unexpected) aspects of the old problem of elastic light scattering by small metal particles, whose size is comparable to or smaller than the thickness of the skin layer. The main focus is put on elucidating the physical grounds for these new aspects. It is shown that, in many practically important cases, the scattering of light by such particles, despite their smallness, may have almost nothing in common with the Rayleigh one. The so-called, anomalous scattering and absorption, as well as Fano resonances, including unconventional (associated with the excitation of longitudinal electromagnetic oscillations) and directional Fano resonances, observed only in a small solid angle, are discussed in detail. The review contains a Mathematical Supplement, which includes a summary of the main results of the Mie theory and a discussion of some general properties of the scattering coefficients. In addition to purely academic interest, the phenomena considered in this review can find wide applications in biology, medicine, pharmacology, genetic engineering, imaging of ultra-small objects, ultra-high-resolution spectroscopy, information transmission, recording, and processing, and many other applications and technologies. The reported study was funded by RFBR, project number 19-11-00001 and the project of the Russian Science Foundation No. 19-72-30012, within the framework of which all the original calculations given in this publication were performed.
Bacterial biofilms underlie many persistent infections, posing major hurdles in antibiotic treatment. Here, we design and demonstrate tug-of-war optical tweezers that can facilitate assessment of cell-cell adhesion - a key contributing factor to biofilm development, thanks to the combined actions of optical scattering and gradient forces. With a customized optical landscape distinct from that of conventional tweezers, not only can such tug-of-war tweezers stably trap and stretch a rod-shaped bacterium in the observing plane, but, more importantly, they can also impose a tunable lateral force that pulls apart cellular clusters without any tethering or mechanical movement. As a proof of principle, we examined a Sinorhizobium meliloti strain that forms robust biofilms and found that the strength of intercellular adhesion depends on the growth medium. This technique may herald new photonic tools for optical manipulation and biofilm study, as well as other biological applications.
In this paper, we present an experiment to measure the spatial distribution of cold atoms in a ceramic integrating sphere. An quadrupole field is applied after the atoms are cooled by diffuse light produced in the ceramic integrating sphere, thus the shift of atomic magnetic sub-levels are position-dependent. We move the anti-Helmholtz coil horizontally while keeping the probe laser beam resonant with the cold atoms at the zero magnetic field. The absorption of the probe beam gives the number of cold atoms at different position. The results show that at the center of the integrating sphere, less atoms exist due to the leakage of diffuse light into the hole connecting to the vacuum pump. The method we developed in this paper is useful to detect cold atoms in a region where imaging is not possible.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا