Classical Shadow Tomography with Locally Scrambled Quantum Dynamics


Abstract in English

We generalize the classical shadow tomography scheme to a broad class of finite-depth or finite-time local unitary ensembles, known as locally scrambled quantum dynamics, where the unitary ensemble is invariant under local basis transformations. In this case, the reconstruction map for the classical shadow tomography depends only on the average entanglement feature of classical snapshots. We provide an unbiased estimator of the quantum state as a linear combination of reduced classical snapshots in all subsystems, where the combination coefficients are solely determined by the entanglement feature. We also bound the number of experimental measurements required for the tomography scheme, so-called sample complexity, by formulating the operator shadow norm in the entanglement feature formalism. We numerically demonstrate our approach for finite-depth local unitary circuits and finite-time local-Hamiltonian generated evolutions. The shallow-circuit measurement can achieve a lower tomography complexity compared to the existing method based on Pauli or Clifford measurements. Our approach is also applicable to approximately locally scrambled unitary ensembles with a controllable bias that vanishes quickly. Surprisingly, we find a single instance of time-dependent local Hamiltonian evolution is sufficient to perform an approximate tomography as we numerically demonstrate it using a paradigmatic spin chain Hamiltonian modeled after trapped ion or Rydberg atom quantum simulators. Our approach significantly broadens the application of classical shadow tomography on near-term quantum devices.

Download