Dislocations govern the properties of any crystals. Yet, how dislocation of pentagonheptagon (5|7) in grain boundaries (GBs) affects the mechanical properties of two-dimensional MoS2 crystals remains poorly known. Using atomistic simulations and continuum disclination dipole model, we show that, depending on the tilt angle and 5|7 dislocation arrangement, MoS2 GB strength can be enhanced or reduced with tilt angle. For zigzag-tilt GBs primarily composed of Mo5|7+S5|7 dislocations, GB strength monotonically increases as the square of tilt angle. For armchair-tilt GBs with Mo5|7 or S5|7 dislocations, however, the trend of GB strength breaks down as 5|7 dislocations are non-evenly spaced. Moreover, mechanical failure initiates at the bond shared by 5|7 rings, in contrast to graphene where failure occurs at the bond shared by 6|7 rings. This work provides new insights into mechanical design of synthetic transition metal dichalcogenide crystals via dislocation engineering.