No Arabic abstract
Purpose: To develop an automated machine-learning-based method for the discovery of rapid and quantitative chemical exchange saturation transfer (CEST) MR fingerprinting acquisition and reconstruction protocols. Methods: An MR physics governed AI system was trained to generate optimized acquisition schedules and the corresponding quantitative reconstruction neural-network. The system (termed AutoCEST) is composed of a CEST saturation block, a spin dynamics module, and a deep reconstruction network, all differentiable and jointly connected. The method was validated using a variety of chemical exchange phantoms and an in-vivo mouse brain at 9.4T. Results: The acquisition times for AutoCEST optimized schedules ranged from 35-71s, with a quantitative image reconstruction time of only 29 ms. The resulting exchangeable proton concentration maps for the phantoms were in good agreement with the known solute concentrations for AutoCEST sequences (mean absolute error = 2.42 mM; Pearsons r=0.992 , p$<$0.0001), but not for an unoptimized sequence (mean absolute error = 65.19 mM; Pearsons r=-0.161, p=0.522). Similarly, improved exchange rate agreement was observed between AutoCEST and quantification of exchange using saturation power (QUESP) methods (mean absolute error: 35.8 Hz, Pearsons r=0.971, p$<$0.0001) compared to an unoptimized schedule and QUESP (mean absolute error = 58.2 Hz; Pearsons r=0.959, p$<$0.0001). The AutoCEST in-vivo mouse brain semi-solid proton volume-fractions were lower in the cortex (12.21$pm$1.37%) compared to the white-matter (19.73 $pm$ 3.30%), as expected, and the amide proton volume-fraction and exchange rates agreed with previous reports. Conclusion: AutoCEST can automatically generate optimized CEST/MT acquisition protocols that can be rapidly reconstructed into quantitative exchange parameter maps.
Purpose: To understand the influence of various acquisition parameters on the ability of CEST MR-Fingerprinting (MRF) to discriminate different chemical exchange parameters and to provide tools for optimal acquisition schedule design and parameter map reconstruction. Methods: Numerical simulations were conducted using a parallel-computing implementation of the Bloch-McConnell equations, examining the effect of TR, TE, flip-angle, water T$_{1}$ and T$_{2}$, saturation-pulse duration, power, and frequency on the discrimination ability of CEST-MRF. A modified Euclidean-distance matching metric was evaluated and compared to traditional dot-product matching. L-Arginine phantoms of various concentrations and pH were scanned at 4.7T and the results compared to numerical findings. Results: Simulations for dot-product matching demonstrated that the optimal flip-angle and saturation times are 30$^{circ}$ and 1100 ms, respectively. The optimal maximal saturation power was 3.4 $mu$T for concentrated solutes with a slow exchange-rate, and 5.2 $mu$T for dilute solutes with medium-to-fast exchange-rates. Using the Euclidean-distance matching metric, much lower maximum saturation powers were required (1.6 and 2.4 $mu$T, respectively), with a slightly longer saturation time (1500 ms) and 90$^{circ}$ flip-angle. For both matching metrics, the discrimination ability increased with the repetition time. The experimental results were in agreement with simulations, demonstrating that more than a 50% reduction in scan-time can be achieved by Euclidean-distance-based matching. Conclusion: Optimization of the CEST-MRF acquisition schedule is critical for obtaining the best exchange parameter accuracy. The use of Euclidean-distance-based matching of signal trajectories simultaneously improved the discrimination ability and reduced the scan time and maximal saturation power required.
Accelerated MRI shortens acquisition time by subsampling in the measurement k-space. Recovering a high-fidelity anatomical image from subsampled measurements requires close cooperation between two components: (1) a sampler that chooses the subsampling pattern and (2) a reconstructor that recovers images from incomplete measurements. In this paper, we leverage the sequential nature of MRI measurements, and propose a fully differentiable framework that jointly learns a sequential sampling policy simultaneously with a reconstruction strategy. This co-designed framework is able to adapt during acquisition in order to capture the most informative measurements for a particular target (Figure 1). Experimental results on the fastMRI knee dataset demonstrate that the proposed approach successfully utilizes intermediate information during the sampling process to boost reconstruction performance. In particular, our proposed method outperforms the current state-of-the-art learned k-space sampling baseline on up to 96.96% of test samples. We also investigate the individual and collective benefits of the sequential sampling and co-design strategies. Code and more visualizations are available at http://imaging.cms.caltech.edu/seq-mri
Purpose: To develop a clinical chemical exchange saturation transfer magnetic resonance fingerprinting (CEST-MRF) pulse sequence and reconstruction method. Methods: The CEST-MRF pulse sequence was modified to conform to hardware limits on clinical scanners while keeping scan time $leqslant$ 2 minutes. The measured data was reconstructed using a deep reconstruction network (DRONE) to yield the water relaxation and chemical exchange parameters. The feasibility of the 6 parameter DRONE reconstruction was tested in simulations in a digital brain phantom. A healthy subject was scanned with the CEST-MRF sequence and a conventional MRF sequence for comparison. The reproducibility was assessed via test-retest experiments and the concordance correlation coefficient (CCC) calculated for white matter (WM) and grey matter (GM). The clinical utility of CEST-MRF was demonstrated in a brain metastasis patient in comparison to standard clinical imaging sequences. The tumor was segmented into edema, solid core and necrotic core regions and the CEST-MRF values compared to the contra-lateral side. Results: The 6 parameter DRONE reconstruction of the digital phantom yielded a mean absolute error of $leqslant$ 6% for all parameters. The CEST-MRF parameters were in good agreement with those from a conventional MRF sequence and previous studies in the literature. The mean CCC for all 6 parameters was 0.79$pm$0.02 in WM and 0.63$pm$0.03 in GM. The CEST-MRF values in nearly all tumor regions were significantly different (p=0.001) from each other and the contra-lateral side. Conclusion: The clinical CEST-MRF sequence provides a method for fast simultaneous quantification of multiple tissue parameters in pathologies.
In this work, we propose a free-breathing magnetic resonance fingerprinting method that can be used to obtain $B_1^+$-robust quantitative maps of the abdomen in a clinically acceptable time. A three-dimensional MR fingerprinting sequence with a radial stack-of-stars trajectory was implemented for quantitative abdominal imaging. The k-space acquisition ordering was adjusted to improve motion-robustness. The flip angle pattern was optimized using the Cramer-Rao Lower Bound, and the encoding efficiency of sequences with 300, 600, 900, and 1800 flip angles was evaluated. To validate the sequence, a movable multicompartment phantom was developed. Reference multiparametric maps were acquired under stationary conditions using a previously validated MRF method. Periodic motion of the phantom was used to investigate the motion-robustness of the proposed sequence. The best performing sequence length (600 flip angles) was used to image the abdomen during a free-breathing volunteer scan. When using a series of 600 or more flip angles, the estimated $T_1$ values in the stationary phantom showed good agreement with the reference scan. Phantom experiments revealed that motion-related artefacts can appear in the quantitative maps, and confirmed that a motion-robust k-space ordering is essential in preventing these artefacts. The in vivo scan demonstrated that the proposed sequence can produce clean parameter maps while the subject breathes freely. Using this sequence, it is possible to generate $B_1^+$-robust quantitative maps of proton density, $T_1$, and $B_1^+$ under free-breathing conditions at a clinically usable resolution within 5 minutes.
There is an increasing need to bring machine learning to a wide diversity of hardware devices. Current frameworks rely on vendor-specific operator libraries and optimize for a narrow range of server-class GPUs. Deploying workloads to new platforms -- such as mobile phones, embedded devices, and accelerators (e.g., FPGAs, ASICs) -- requires significant manual effort. We propose TVM, a compiler that exposes graph-level and operator-level optimizations to provide performance portability to deep learning workloads across diverse hardware back-ends. TVM solves optimization challenges specific to deep learning, such as high-level operator fusion, mapping to arbitrary hardware primitives, and memory latency hiding. It also automates optimization of low-level programs to hardware characteristics by employing a novel, learning-based cost modeling method for rapid exploration of code optimizations. Experimental results show that TVM delivers performance across hardware back-ends that are competitive with state-of-the-art, hand-tuned libraries for low-power CPU, mobile GPU, and server-class GPUs. We also demonstrate TVMs ability to target new accelerator back-ends, such as the FPGA-based generic deep learning accelerator. The system is open sourced and in production use inside several major companies.