Do you want to publish a course? Click here

Mapping the Electronic Structure Origins of Surface- and Chemistry-Dependent Doping Trends in III-V Quantum Dots

86   0   0.0 ( 0 )
 Added by Heather Kulik
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Modifying the optoelectronic properties of nanostructured materials through introduction of dopant atoms has attracted intense interest. Nevertheless, the approaches employed are often trial and error, preventing rational design. We demonstrate the power of large-scale electronic structure calculations with density functional theory (DFT) to build an atlas of preferential dopant sites for a range of M(II) and M(III) dopants in the representative III-V InP magic sized cluster (MSC). We quantify the thermodynamic favorability of dopants, which we identify to be both specific to the sites within the MSC (i.e., interior vs surface) and to the nature of the dopant atom (i.e., smaller Ga(III) vs larger Y(III) or Sc(III)). These observations motivate development of maps of the most and least favorable doping sites, which are consistent with some known experimental expectations but also yield unexpected observations. For isovalent doping (i.e., Y(III)/Sc(III) or Ga(III), we observed stronger sensitivity of the predicted energetics to the type of ligand orientation on the surface than to the dopant type, but divergent behavior is observed for whether interior doping is favorable. For charge balancing with M(II) (i.e., Zn or Cd) dopants, we show that the type of ligand removed during the doping reaction is critical. We show that limited cooperativity with dopants up to moderate concentrations occurs, indicating rapid single-dopant estimations of favorability from DFT can efficiently guide rational design. Our work emphasizes the strong importance of ligand chemistry and surface heterogeneity in determining paths to favorable doping in quantum dots, an observation that will be general to other III-V and II-VI quantum dot systems generally synthesized with carboxylate ligands.



rate research

Read More

Recent works suggest that the surface chemistry, in particular, the presence of oxygen vacancies can affect the polarization in a ferroelectric material. This should, in turn, influence the domain ordering driven by the need to screen the depolarizing field. Here we show using density functional theory that the presence of oxygen vacancies at the surface of BaTiO3 (001) preferentially stabilizes an inward pointing, P-, polarization. Mirror electron microscopy measurements of the domain ordering confirm the theoretical results.
Using angle-resolved photoemission spectroscopy, we show the direct evidence of charge transfer between adsorbed molecules and metal substrate, i.e. chemisorption of CO on Pt(111) and Pt-Sn/Pt(111) 2x2 surfaces. The observed band structure shows a unique signature of charge transfer as CO atoms are adsorbed,revealing the roles of specific orbital characters participating in the chemisorption process. As the coverage of CO increases, the degree of charge transfer between CO and Pt shows clear difference to that of Pt-Sn. With comparison to DFT calculation results, the observed distinct features in the band structure are interpreted as backdonation bonding states of Pt molecular orbital to the 2{pi} orbital of CO. Furthermore, the change in the surface charge concentration, measured from the Fermi surface area, shows Pt surface has a larger charge concentration change than Pt-Sn surface upon CO adsorption. The difference in the charge concentration change between Pt and Pt-Sn surfaces reflects the degree of electronic effects during CO adsorption on Pt-Sn.
115 - E. Durgun , S. Tongay , 2005
Unusual physical properties of single-wall carbon nanotubes have started a search for similar tubular structures of other elements. In this paper, we present a theoretical analysis of single-wall nanotubes of silicon and group III-V compounds. Starting from precursor graphene-like structures we investigated the stability, energetics and electronic structure of zigzag and armchair tubes using first-principles pseudopotential plane wave method and finite temperature ab-initio molecular dynamics calculations. We showed that (n,0) zigzag and (n,n) armchair nanotubes of silicon having n > 6 are stable but those with n < 6 can be stabilized by internal or external adsorption of transition metal elements. Some of these tubes have magnetic ground state leading to spintronic properties. We also examined the stability of nanotubes under radial and axial deformation. Owing to the weakness of radial restoring force, stable Si nanotubes are radially soft. Undeformed zigzag nanotubes are found to be metallic for 6 < n < 11 due to curvature effect; but a gap starts to open for n > 12. Furthermore, we identified stable tubular structures formed by stacking of Si polygons. We found AlP, GaAs, and GaN (8,0) single-wall nanotubes stable and semiconducting. Our results are compared with those of single-wall carbon nanotubes.
We show that the transition origins of electronic excitations identified by quantified natural transition orbital (QNTO) analysis can be employed to connect potential energy surfaces (PESs) according to their character across a widerange of molecular geometries. This is achieved by locating the switching of transition origins of adiabatic potential surfaces as the geometry changes. The transition vectors for analysing transition origins are provided by linear response time-dependent density functional theory (TDDFT) calculations under the Tamm-Dancoff approximation. We study the photochemical CO ring opening of oxirane as an example and show that the results corroborate the traditional Gomer-Noyes mechanism derived experimentally. The knowledge of specific states for the reaction also agrees well with that given by previous theoretical work using TDDFT surface-hopping dynamics that was validated by high-quality quantum Monte Carlo calculations. We also show that QNTO can be useful for considerably larger and more complex systems: by projecting the excitations to those of a reference oxirane molecule, the approach is able to identify and analyse specific excitations of a trans-2,3-diphenyloxirane molecule.
136 - Nirmal Ganguli , S. Acharya , 2014
We have studied the electronic structure of CdS/ZnSe coupled quantum dot, a novel heterostructure at the nano-scale. Our calculations reveal CdS/ZnSe coupled quantum dots to be of type-II in nature where the anion-p states play an important role in deciding the band offset for the highest occupied molecular orbitals (HOMO). We show that the offsets of HOMO as well as the lowest unoccupied molecular orbitals (LUMO) can be tuned by changing the sizes of the components of the coupled quantum dot, thereby providing an additional control parameter to tune the band gap and the optical properties. Our investigations also suggest that formation of alloy near the interface has very little influence on the band offsets, although it affects the spatial localization of the quantum states from the individual components. Comparing the influence of strain on coupled quantum dots and core/shell nanowires, we find strain practically has no role in the electronic structure of coupled quantum dots as the small effective area of the interface in a coupled quantum dot helps a large part of the structure remain free from any substantial strain. We argue that in contrast to core-shell nanowires, quantum confinement is the key parameter that controls the electronic properties of coupled quantum dot and should therefore be an ideal candidate for the design of a quantum device.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا