No Arabic abstract
We investigate Rindlers frame measurements. From its perspective, we found a geometric/gravitational interpretation of speed of light, mass and uncertainty principle. This can be interpreted as measurements of a black hole universal clock. This lead to an emergence of a timeless state of gravity in a mathematically consistent way. In other words, space my be a frozen time.
Generalizing results of our previous work (where classical kinetic energy has been used) in this work (where ultra-relativistic kinetic energy is used) we suggest an original variant of the determination of minimal length (corresponding to Plank length) by formation of a microscopic (tiny) black hole. Like to some previous authors we use Heisenberg coordinate-momentum uncertainty relation, on the one hand. But, instead of metric fluctuation (obtained by second derivative in Einstein equations) that generalizes uncertainty relation by an additional term, used by previous authors, we use Hawking temperature of the black hole and standard Heisenberg coordinate-momentum uncertainty relation.
The statistical-mechanical origin of the Bekenstein-Hawking entropy $S^{BH}$ in the induced gravity is discussed. In the framework of the induced gravity models the Einstein action arises as the low energy limit of the effective action of quantum fields. The induced gravitational constant is determined by the masses of the heavy constituents. We established the explicit relation between statistical entropy of constituent fields and black hole entropy $S^{BH}$.
We discuss the macroscopic quantum tunneling from the black hole to the white hole of the same mass. Previous calculations in Ref.[1] demonstrated that the probability of the tunneling is $p propto exp(-2S_text{BH})$, where $S_text{BH}$ is the entropy of the Schwarzschild black hole. This in particular suggests that the entropy of the white hole is with minus sign the entropy of the black hole, $S_text{WH}(M)=- S_text{BH}(M)= - A/(4G)$. Here we use a different way of calculations. We consider three different types of the hole objects: black hole, white hole and the fully static intermediate state. The probability of tunneling transitions between these three states is found using singularities in the coordinate transformations between these objects. The black and white holes are described by the Painleve-Gullstrand coordinates with opposite shift vectors, while the intermediate state is described by the static Schwarzschild coordinates. The singularities in the coordinate transformations lead to the imaginary part in the action, which determines the tunneling exponent. For the white hole the negative entropy is obtained, while the intermediate state -- the fully static hole -- has zero entropy. This procedure is extended to the Reissner-Nordstrom black hole and to its white and static partners, and also to the entropy and temperature of the de Sitter Universe.
In the context of massive gravity theories, we study holographic flows driven by a relevant scalar operator and interpolating between a UV 3-dimensional CFT and an IR Kasner universe. For a large class of scalar potentials, the Cauchy horizon never forms in presence of a non-trivial scalar hair, although, in absence of it, the black hole solution has an inner horizon due to the finite graviton mass. We show that the instability of the Cauchy horizon triggered by the scalar field is associated to a rapid collapse of the Einstein-Rosen bridge. The corresponding flows run smoothly through the event horizon and at late times end in a spacelike singularity at which the asymptotic geometry takes a general Kasner form dominated by the scalar hair kinetic term. Interestingly, we discover deviations from the simple Kasner universe whenever the potential terms become larger than the kinetic one. Finally, we study the effects of the scalar deformation and the graviton mass on the Kasner singularity exponents and show the relationship between the Kasner exponents and the entanglement and butterfly velocities probing the black hole dynamics.
We investigate the propagation of gravitational waves on a black hole background within the low energy effective field theory of gravity, where effects from heavy fields are captured by higher dimensional curvature operators. Depending on the spin of the particles integrated out, the speed of gravitational waves at low energy can be either superluminal or subluminal as compared to the causal structure observed by other species. Interestingly however, gravitational waves are always exactly luminal at the black hole horizon, implying that the horizon is identically defined for all species. We further compute the corrections on quasinormal frequencies caused by the higher dimensional curvature operators and highlight the corrections arising from the low energy effective field.