Do you want to publish a course? Click here

Robust Clearing Price Mechanisms for Reserve Price Optimization

97   0   0.0 ( 0 )
 Added by Zhe Feng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Setting an effective reserve price for strategic bidders in repeated auctions is a central question in online advertising. In this paper, we investigate how to set an anonymous reserve price in repeated auctions based on historical bids in a way that balances revenue and incentives to misreport. We propose two simple and computationally efficient methods to set reserve prices based on the notion of a clearing price and make them robust to bidder misreports. The first approach adds random noise to the reserve price, drawing on techniques from differential privacy. The second method applies a smoothing technique by adding noise to the training bids used to compute the reserve price. We provide theoretical guarantees on the trade-offs between the revenue performance and bid-shading incentives of these two mechanisms. Finally, we empirically evaluate our mechanisms on synthetic data to validate our theoretical findings.



rate research

Read More

We study revenue maximization through sequential posted-price (SPP) mechanisms in single-dimensional settings with $n$ buyers and independent but not necessarily identical value distributions. We construct the SPP mechanisms by considering the best of two simple pricing rules: one that imitates the revenue optimal mchanism, namely the Myersonian mechanism, via the taxation principle and the other that posts a uniform price. Our pricing rules are rather generalizable and yield the first improvement over long-established approximation factors in several settings. We design factor-revealing mathematical programs that crisply capture the approximation factor of our SPP mechanism. In the single-unit setting, our SPP mechanism yields a better approximation factor than the state of the art prior to our work (Azar, Chiplunkar & Kaplan, 2018). In the multi-unit setting, our SPP mechanism yields the first improved approximation factor over the state of the art after over nine years (Yan, 2011 and Chakraborty et al., 2010). Our results on SPP mechanisms immediately imply improved performance guarantees for the equivalent free-order prophet inequality problem. In the position auction setting, our SPP mechanism yields the first higher-than $1-1/e$ approximation factor. In eager second-price (ESP) auctions, our two simple pricing rules lead to the first improved approximation factor that is strictly greater than what is obtained by the SPP mechanism in the single-unit setting.
We study the problem of learning a linear model to set the reserve price in an auction, given contextual information, in order to maximize expected revenue from the seller side. First, we show that it is not possible to solve this problem in polynomial time unless the emph{Exponential Time Hypothesis} fails. Second, we present a strong mixed-integer programming (MIP) formulation for this problem, which is capable of exactly modeling the nonconvex and discontinuous expected reward function. Moreover, we show that this MIP formulation is ideal (i.e. the strongest possible formulation) for the revenue function of a single impression. Since it can be computationally expensive to exactly solve the MIP formulation in practice, we also study the performance of its linear programming (LP) relaxation. Though it may work well in practice, we show that, unfortunately, in the worst case the optimal objective of the LP relaxation can be O(number of samples) times larger than the optimal objective of the true problem. Finally, we present computational results, showcasing that the MIP formulation, along with its LP relaxation, are able to achieve superior in- and out-of-sample performance, as compared to state-of-the-art algorithms on both real and synthetic datasets. More broadly, we believe this work offers an indication of the strength of optimization methodologies like MIP to exactly model intrinsic discontinuities in machine learning problems.
The societys insatiable appetites for personal data are driving the emergency of data markets, allowing data consumers to launch customized queries over the datasets collected by a data broker from data owners. In this paper, we study how the data broker can maximize her cumulative revenue by posting reasonable prices for sequential queries. We thus propose a contextual dynamic pricing mechanism with the reserve price constraint, which features the properties of ellipsoid for efficient online optimization, and can support linear and non-linear market value models with uncertainty. In particular, under low uncertainty, our pricing mechanism provides a worst-case regret logarithmic in the number of queries. We further extend to other similar application scenarios, including hospitality service, online advertising, and loan application, and extensively evaluate three pricing instances of noisy linear query, accommodation rental, and impression over MovieLens 20M dataset, Airbnb listings in U.S. major cities, and Avazu mobile ad click dataset, respectively. The analysis and evaluation results reveal that our proposed pricing mechanism incurs low practical regret, online latency, and memory overhead, and also demonstrate that the existence of reserve price can mitigate the cold-start problem in a posted price mechanism, and thus can reduce the cumulative regret.
In this paper, we solve the multiple product price optimization problem under interval uncertainties of the price sensitivity parameters in the demand function. The objective of the price optimization problem is to maximize the overall revenue of the firm where the decision variables are the prices of the products supplied by the firm. We propose an approach that yields optimal solutions under different variations of the estimated price sensitivity parameters. We adopt a robust optimization approach by building a data-driven uncertainty set for the parameters, and then construct a deterministic counterpart for the robust optimization model. The numerical results show that two objectives are fulfilled: the method reflects the uncertainty embedded in parameter estimations, and also an interval is obtained for optimal prices. We also conducted a simulation study to which we compared the results of our approach. The comparisons show that although robust optimization is deemed to be conservative, the results of the proposed approach show little loss compared to those from the simulation.
In this paper, we study a retailer price optimization problem which includes the practical constraints: maximum number of price changes and minimum amount of price change (if a change is recommended). We provide a closed-form formula for the Euclidean projection onto the feasible set defined by these two constraints, based on which a simple gradient projection algorithm is proposed to solve the price optimization problem. We study the convergence and solution quality of the proposed algorithm. We extend the base model to include upper/lower bounds on the individual product prices and solve it with some adjustments to the gradient projection algorithm. Numerical results are reported to demonstrate the performance of the proposed algorithm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا